Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Chin Med ; 19(1): 81, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858762

RESUMEN

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

2.
Phytomedicine ; 104: 154346, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35872445

RESUMEN

BACKGROUND: Huang-Lian-Jie-Du Decoction is a traditional Chinese medicine formula which has long been used to treat inflammatory skin disease including AD. However, Gardeniae Fructus, a component herb of HLJDD, has noticeable toxicity in liver and kidney. We therefore replaced Gardeniae Fructus with Dictamni Cortex with a hope to derive at a modified HLJDD (MHLJDD) with better safety profile. PURPOSE: The present study aimed to develop MHLJDD and identify its active fraction as innovative therapeutic agents for AD using 2,4-dinitrobenzene (DNCB) and calcipotriol (MC903)-sensitized mouse models of AD. METHODS: MHLJDD and the combination of the 1-butanol-soluble-fraction and the water-soluble-fraction (MHLJDD-F) were given intragastrically to the DNCB-induced mice and MC903-induced mice for two weeks. The body weight, dorsal skin/ear thickness and severity of AD symptoms of the mice were measured throughout the study. Scratching behaviors were observed after drug treatment. The blood and dorsal skin/ear tissues of mice were harvested for histopathological examination and biochemical analyses. RESULTS: The results revealed that DNCB- and MC903-induced AD symptoms, including skin thickening, dryness, erythema and excoriations, in the dorsal skin and ears were significantly alleviated in the MHLJDD and MHLJDD-F-treated mice. Ceramides content and protein expressions of filaggrin and loricrin were also up-regulated after treatment with MHLJDD and MHLJDD-F. In addition, skin inflammation induced by DNCB and MC903 were markedly suppressed in the MHLJDD and MHLJDD-F-treated mice, and the action mechanisms involve suppression of the release of inflammatory cytokines, as well as downregulation of the activation of NF-κB and MAPKs pathways. Besides, MHLJDD and MHLJDD-F could reverse the abundance of gut microbiota induced by DNCB in mice. CONCLUSIONS: MHLJDD and MHLJDD-F could markedly relieve AD-like symptoms induced by DNCB and MC903 in mice through, at least in part, improving the epidermal barrier function and inhibiting skin inflammation via suppressing the activation of NF-κB and MAPKs pathways and regulation of the gut microflora dysbiosis. This study reported for the first time that MHLJDD and its active fraction could be used as innovative therapeutic agents for AD.


Asunto(s)
Dermatitis Atópica , FN-kappa B , Animales , Coptis chinensis , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitrobencenos , Dinitroclorobenceno , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Piel/metabolismo
3.
J Adv Res ; 35: 231-243, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35024199

RESUMEN

Introduction: Honokiol (HO) exerts neuroprotective effects in several animal models of Alzheimer's disease (AD), but the poor dissolution hampers its bioavailability and therapeutic efficacy. Objectives: A novel honokiol nanoscale drug delivery system (Nano-HO) with smaller size and excellent stability was developed in this study to improve the solubility and bioavailability of HO. The anti-AD effects of Nano-HO was determined. Methods: Male TgCRND8 mice were daily orally administered Nano-HO or HO at the same dosage (20 mg/kg) for 17 consecutive weeks, followed by assessment of the spatial learning and memory functions using the Morris Water Maze test (MWMT). Results: Our pharmacokinetic study indicated that the oral bioavailability was greatly improved by Nano-HO. In addition, Nano-HO significantly improved cognitive deficits and inhibited neuroinflammation via suppressing the levels of TNF-α, IL-6 and IL-1ß in the brain, preventing the activation of microglia (IBA-1) and astrocyte (GFAP), and reducing ß-amyloid (Aß) deposition in the cortex and hippocampus of TgCRND8 mice. Moreover, Nano-HO was more effective than HO in modulating amyloid precursor protein (APP) processing via suppressing ß-secretase, as well as enhancing Aß-degrading enzymes like neprilysin (NEP). Furthermore, Nano-HO more markedly inhibited tau hyperphosphorylation via decreasing the ratio of p-Tau (Thr 205)/tau and regulating tau-related apoptosis proteins (caspase-3 and Bcl-2). In addition, Nano-HO more markedly attenuated the ratios of p-JNK/JNK and p-35/CDK5, while enhancing the ratio of p-GSK-3ß (Ser9)/GSK-3ß. Finally, Nano-HO prevented the gut microflora dysbiosis in TgCRND8 mice in a more potent manner than free HO. Conclusion: Nano-HO was more potent than free HO in improving cognitive impairments in TgCRND8 mice via inhibiting Aß deposition, tau hyperphosphorylation and neuroinflammation through suppressing the activation of JNK/CDK5/GSK-3ß signaling pathway. Nano-HO also more potently modulated the gut microbiota community to protect its stability than free HO. These results suggest that Nano-HO has good potential for further development into therapeutic agent for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbioma Gastrointestinal , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Compuestos de Bifenilo , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta , Lignanos , Masculino , Ratones , Enfermedades Neuroinflamatorias
4.
Bioorg Chem ; 119: 105538, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929516

RESUMEN

Baicalin has distinct therapeutic effects in various skin diseases animal models such as atopic dermatitis (AD) and psoriasis. In this study, we aimed to investigate the anti-atopic dermatitis (AD) effects of baicalin in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Female BALB/c mice treated with DNCB to induce AD-like skin lesions and orally administrated with baicalin daily for 14 consecutive days. Baicalin significantly inhibited dorsal skin thickness and trans-epidermal water loss and epidermal thickness in dorsal skin. In addition, baicalin also significantly up-regulated the protein expressions of filaggrin, involucrin, and loricrin, but inhibited the inflammatory response and the activation of NF-κB and JAK/STAT pathways in the dorsal skin of the DNCB-treated mice. Furthermore, baicalin significantly restored the abundance of probiotics in the gut microbiota of the DNCB-treated mice. Pseudo germ-free (GF) DNCB-treated mice receiving fecal microbiota from baicalin donors reduced the dorsal skin thickness and skin EASI score, and inhibited the release of IgE, histamine, TNF-α and IL-4 in serum of mice. In summary, baicalin ameliorates AD-like skin lesions induced by DNCB in mice via regulation of the Th1/Th2 balance, improvement of skin barrier function and modulation of gut dysbiosis, and inhibition of inflammation through suppressing the activation of NF-κB and JAK/STAT pathways.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Dermatitis Atópica/tratamiento farmacológico , Flavonoides/farmacología , Piel/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno , Relación Dosis-Respuesta a Droga , Femenino , Flavonoides/química , Flavonoides/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Raíces de Plantas/química , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/metabolismo , Scutellaria baicalensis/química , Piel/metabolismo , Piel/patología , Relación Estructura-Actividad
5.
Chin Med ; 16(1): 110, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706756

RESUMEN

BACKGROUND: Uncaria tomentosa, which has similar chemical constituents with Uncaria rhynchophylla, has been reported to alleviate cognitive impairments in Alzheimer's disease (AD) animal models. This study aimed to compare the chemical constituents and anti-AD effect of the ethanol extracts of U. tomentosa (UTE) and U. rhynchophylla (URE). METHODS: The high-performance liquid chromatography (HPLC) was used to compare the chemical constituents of UTE and URE. Streptozotocin (STZ) was intracerebroventricularly (ICV) injected into adult male Sprague-Dawley (SD) rats to establish AD model. UTE (400 mg/kg) or URE (400 mg/kg) was administrated intragastrically once daily to the rats for 6 consecutive weeks. Morris water maze (MWM) test was conducted to assess the neurological functions in the STZ-induced AD rats. The brain tissues of the rats were harvested for further biochemical assay. RESULTS: The MWM test results showed both UTE and URE could significantly improve the learning and memory impairments induced by STZ in rats. Both UTE and URE could significantly inhibit the hyperphosphorylation of tau protein, reduce the elevated levels of pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α), enhance activities of antioxidant enzymes (SOD, CAT and GPx) and increase the protein expression of HO-1. In addition, UTE could decrease the malondialdehyde (MDA) level. Furthermore, both UTE and URE significantly enhanced Akt activation, down regulated the activation of glycogen synthase kinase 3ß (GSK-3ß), and induced the nuclear translocation of Nrf2 in the STZ-induced AD rats. CONCLUSIONS: UTE and URE contained similar chemical constituents. We found for the first time that both of them could ameliorate cognitive deficits in the STZ-induced AD rats. The underlying molecular mechanism involve suppression of tau hyperphosphorylation, anti-oxidant and anti-neuroinflammation via modulating Akt (Ser473)/GSK3ß (Ser9)-mediated Nrf2 activation. These findings amply implicate that both of UTE and URE are worthy of being developed clinically into pharmaceutical treatment for AD.

6.
J Ethnopharmacol ; 274: 114021, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-33716079

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atopic dermatitis (AD) is a skin inflammatory disease characterized by erythema, eruption, lichenification and pruritus. Shi Zhen Formula (SZF), an empirical Chinese herbal preparation, has clinical efficacy in relieving the symptoms of AD patients. However, the underlying molecular mechanisms of SZF remained unclear. AIM OF THE STUDY: We aimed to investigate the anti-AD effects of SZF and elucidate its underlying molecular mechanisms using in vitro and in vivo models of AD. MATERIALS AND METHODS: High-performance liquid chromatography analysis was performed for quality control of SZF extract. The anti-inflammatory effect of SZF was investigated through evaluating the levels of nitric oxide (NO), chemokines and pro-inflammatory cytokines in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). SZF (3.15, 6.30 and 9.45 g/kg) and dexamethasone (5 mg/kg) were administered by gavage daily for 15 consecutive days. The body weight, skin thickness, skin dermatitis severity and scratching behaviors were recorded throughout the study. Histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-PCR), western blot (WB) and ELISA analysis were used to illuminate the molecular targets associated with the anti-AD effects of SZF. RESULTS: SZF markedly decreased the epidermal thickening and infiltration of mast cells in the ears and dorsal skin of the 2,4-dinitrochlorobenzene (DNCB)-treated mice. SZF not only suppressed the levels of immunoglobulin E (IgE), histamine, thymic stromal lymphopoietin (TSLP) and IL-4 in the serum but also suppressed the over-production of IL-4 and IL-6 and gene expressions of IL-4, IL-13, IL-31 and TSLP in the dorsal skin. Moreover, SZF improved epidermal barrier by increasing the protein expressions of filaggrin, involucrin and loricrin and inhibited the activation of NF-κB p65 pathway in the dorsal skin of the DNCB-treated mice. CONCLUSION: SZF alleviates DNCB induced AD-like skin lesions in mice through regulating Th1/Th2 balance, improving epidermal barrier and inhibiting skin inflammation. Our research findings provide scientific footing on the use of this Chinese herbal formula for the treatment of AD.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Antiinflamatorios/química , Supervivencia Celular/efectos de los fármacos , Citocinas/sangre , Citocinas/metabolismo , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Dinitroclorobenceno/toxicidad , Medicamentos Herbarios Chinos/química , Femenino , Histamina/sangre , Inmunoglobulina E/sangre , Interleucina-4/sangre , Lipopolisacáridos/toxicidad , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Modelos Teóricos , FN-kappa B/metabolismo , Células RAW 264.7 , Piel/efectos de los fármacos , Piel/patología , Células TH1/metabolismo , Células Th2/metabolismo , Linfopoyetina del Estroma Tímico
7.
Phytother Res ; 35(5): 2758-2772, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33440458

RESUMEN

Our previous study revealed that Epimedii Folium (EF) and Codonopsis Radix (CNR) significantly promoted tumor growth on a subcutaneous mouse model of prostate cancer (PCa) via enhancing the mRNA and protein expressions of androgen receptor (AR), while Astragali Radix (AGR) inhibited tumor growth via suppressing the protein expression of AR. In the present study, we aimed to investigate the potential interactions between EF, CNR or AGR and AR antagonist (abiraterone acetate [ABI]) on the tumor growth using subcutaneous and orthotopic PCa mouse models. EF, CNR, AGR and ABI were intragastrically given to mice once every 2 days for 4 weeks. The pharmacokinetics of ABI were evaluated in the plasma of rats when combined with EF, CNR, or AGR. Our results demonstrated that EF or CNR could weaken the anti-tumor effects of ABI via increasing the AR expression involving activation of the PI3K/AKT and Rb/E2F pathways and decreasing the bioavailability of ABI, while AGR could enhance the anti-tumor effects of ABI through suppressing the AR expression via inhibiting the activations of PI3K/AKT and Rb/E2F pathways and increasing the bioavailability of ABI. These findings imply that cautions should be exercised when prescribing EF and CNR for PCa patients.

8.
Oxid Med Cell Longev ; 2020: 5920476, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714487

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss. Magnolol (MN), the main active ingredient of Magnolia officinalis, possesses anti-AD effects in several experimental models of AD. In this study, we aimed to explore whether MN could ameliorate the cognitive deficits in TgCRND8 transgenic mice and to elucidate its molecular mechanisms. Male TgCRND8 mice were orally administered with MN (20 and 40 mg/kg) daily for 4 consecutive months, followed by assessing the spatial learning and memory functions using the open-field, radial arm maze, and novel object recognition tests. The results demonstrated that MN (20 and 40 mg/kg) could markedly ameliorate the cognitive deficits in TgCRND8 mice. In addition, MN significantly increased the expression of postsynaptic density protein 93 (PSD93), PSD-95, synapsin-1, synaptotagmin-1, synaptophysin (SYN), and interleukin-10 (IL-10), while markedly reduced the protein levels of tumor necrosis factor alpha (TNF-α), IL-6, IL-1ß, Aß 40, and Aß 42, and modulated the amyloid precursor protein (APP) processing and phosphorylation. Immunofluorescence showed that MN significantly suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the hippocampus and cerebral cortex of TgCRND8 mice. Mechanistic studies revealed that MN could significantly increase the ratios of p-GSK-3ß (Ser9)/GSK-3ß, p-Akt (Ser473)/Akt, and p-NF-κB p65/NF-κB p65. These findings indicate that MN exerted cognitive deficits improving effects via suppressing neuroinflammation, amyloid pathology, and synaptic dysfunction through regulating the PI3K/Akt/GSK-3ß and NF-κB pathways, suggesting that MN is a promising naturally occurring polyphenol worthy of further developing into a therapeutic agent for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Compuestos de Bifenilo/uso terapéutico , Lignanos/uso terapéutico , Neuropatología/métodos , Óxido Nítrico Sintasa/uso terapéutico , Animales , Compuestos de Bifenilo/farmacología , Modelos Animales de Enfermedad , Humanos , Lignanos/farmacología , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa/farmacología
9.
J Ethnopharmacol ; 260: 113058, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32525068

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Many prostate cancer (PCa) patients in Mainland China and other Asian countries often use Chinese herbal medicines as an adjuvant treatment while receiving Western medicines. However, concerns have been raised about the potential herb-drug interaction when using herbal medicines containing phytoandrogens. AIM OF THE STUDY: This study aimed to investigate the effects of the selected 21 Chinese herbal medicines on the proliferation and tumor growth using the relevant in vitro and in vivo models of PCa. MATERIALS AND METHODS: After treatment of LNCaP and 22Rv1 cells with different concentrations of 70% ethanol extracts of the 21 selected herbal medicines for 48 h, the proliferative activity, the effects on androgen receptor (AR) and prostate specific antigen (PSA) were determined. The anti-tumor effects of the 21 herbs on PCa growth were also investigated on a subcutaneous mouse model of PCa. RESULTS: The results showed that Epimedii Folium (EF) and Codonopsis Radix (CNR) could significantly increase the cell viability in LNCaP cells (p < 0.05 for both) and 22Rv1 cells (p < 0.05 for both), protein expressions of AR in LNCaP cells (p < 0.05 for both) and 22Rv1 cells (p < 0.05 for both), and PSA (p < 0.05 for both) in LNCaP cells. EF, CNR, and Cistanches Herba (CCH) markedly accentuated the tumor growth (p < 0.05 for three drugs) and AR expression (p < 0.05 for three herbs) in tumor tissues. On the other hand, treatment with Astragali Radix (AGR), Chuanxiong Rhizoma (CXR) and Bruceae Fructus (BF) significantly inhibited the cell viability in LNCaP cells (p < 0.05, p < 0.05 and p < 0.001, respectively) and in 22Rv1 cells (p < 0.05, p < 0.05 and p < 0.001, respectively), and the protein expression of AR in LNCaP cells (p < 0.05 for three herbs) and 22Rv1 cells (p < 0.05, p < 0.05 and p < 0.001, respectively), and the protein expression of PSA (p < 0.05 for three herbs) in LNCaP cells, as well as tumor growth (p < 0.05 for three herbs) and the AR expression (p < 0.05 for AGR and CXR, p < 0.001 for BF) in tumor tissues. CONCLUSION: Our results revealed that AGR, CXR and BF suppressed the PCa development via inhibition of AR expression, while EF, CNR and CCH promoted the development and progression of PCa via enhancement of AR expression. The results strongly suggest that caution should be exercised when using androgenic Chinese herbal medicines in PCa patients.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/efectos de los fármacos , Antagonistas de Receptores Androgénicos/toxicidad , Andrógenos/toxicidad , Animales , Antineoplásicos Fitogénicos/toxicidad , Línea Celular Tumoral , Medicamentos Herbarios Chinos/toxicidad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Desnudos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Curr Vasc Pharmacol ; 18(4): 346-357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31272356

RESUMEN

BACKGROUND: Uncaria rhynchophylla (Miq.) Jacks (Rubinaceae), a common herbal medicine known as Gou-teng in Chinese, is commonly used in Chinese medicine practice for the treatment of convulsions, hypertension, epilepsy, eclampsia and other cerebral diseases. The major active components of U. rhynchophylla are alkaloids, terpenoids and flavonoids. The protective effects of U. rhynchophylla and its major components on central nervous system (CNS) have become a focus of research in recent decades. OBJECTIVE: The study aimed to systematically summarize the pharmacological activities of U. rhynchophylla and its major components on the CNS. METHODS: This review summarized the experimental findings from our laboratories, together with other literature data obtained through a comprehensive search of databases including the Pubmed and the Web of Science. RESULTS: U. rhynchophylla and its major components such as rhynchophylline and isorhynchophylline have been shown to have neuroprotective effects on Alzheimer's disease, Parkinson's disease, depression, cerebral ischaemia through a number of mechanisms including anti-oxidant, anti-inflammatory actions and regulation on neurotransmitters. CONCLUSION: U. rhynchophylla and its major components have multiple beneficial pharmacological effects on CNS. Further studies on U. rhynchophylla and its major components are warranted to fully illustrate the underlying molecular mechanisms, pharmacokinetics, and toxicological profiles of these naturally occurring compounds and their potential for clinical application.


Asunto(s)
Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Uncaria , Animales , Sistema Nervioso Central/fisiopatología , Fármacos del Sistema Nervioso Central/efectos adversos , Fármacos del Sistema Nervioso Central/aislamiento & purificación , Enfermedades del Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/psicología , Humanos , Extractos Vegetales/efectos adversos , Extractos Vegetales/aislamiento & purificación , Resultado del Tratamiento , Uncaria/efectos adversos , Uncaria/química
11.
Int J Mol Med ; 44(6): 2015-2026, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638181

RESUMEN

Bruceine D is one of the active components of Brucea javanica (L.) Merr., which is widely used to treat cancer in China. The aim of the present study was to evaluate the potential effect of bruceine D against non­small­cell lung cancer (NSCLC) cells and delineate its underlying mechanisms. The results indicated that treatment with bruceine D markedly inhibited the proliferation of wild­type NSCLC cells and epidermal growth factor receptor­mutant cells in a dose­ and time­dependent manner, and significantly decreased the colony­forming ability and migration of A549 cells. Hoechst 33342 staining and flow cytometric analysis demonstrated that treatment with bruceine D effectively induced apoptosis of A549 cells. In addition, the proapoptotic effect of bruceine D was found to be associated with G0­G1 cell cycle arrest, accumulation of intracellular reactive oxygen species (ROS) and malondialdehyde, depletion of glutathione levels and disruption of mitochondrial membrane potential. Additionally, pretreatment with N­acetylcysteine, a ROS scavenger, significantly attenuated the bruceine D­induced inhibition in A549 cells. Western blotting demonstrated that treatment with bruceine D significantly suppressed the expression of the anti­apoptotic proteins Bcl­2, Bcl­xL and X­linked inhibitor of apoptosis, enhanced the expression levels of apoptotic proteins Bax and Bak, and inhibited the expression of pro­caspase­3 and pro­caspase­8. Based on these results, it may be suggested that inhibition of A549 NSCLC cell proliferation by bruceine D is associated with the modulation of ROS­mitochondrial­mediated death signaling. This novel insight may provide further evidence to verify the anticancer efficacy of B. javanica, and support a role for bruceine D in the anti­NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cuassinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos
12.
Brain Behav Immun ; 82: 264-278, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31476414

RESUMEN

Isorhynchophylline (IRN) has been demonstrated to have distinct anti-Alzheimer's disease (AD) activity in several animal models of AD. In this study, we aimed at evaluating the preventive effect of IRN on the cognitive deficits and amyloid pathology in TgCRND8 mice. Male TgCRND8 mice were administered with IRN (20 or 40 mg/kg) by oral gavage daily for 4 months, followed by assessing the spatial learning and memory functions with the Radial Arm Maze (RAM) test. Brain tissues were determined immunohistochemically or biochemically for changes in amyloid pathology, tau hyperphosphorylation and neuroinflammation. Our results revealed that IRN (40 mg/kg) significantly ameliorated cognitive deficits in TgCRND8 mice. In addition, IRN (40 mg/kg) markedly reduced the levels of Aß40, Aß42 and tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and IL-1ß, and modulated the amyloid precursor protein (APP) processing and phosphorylation by altering the protein expressions of ß-site APP cleaving enzyme-1 (BACE-1), phosphorylated APP (Thr668), presenilin-1 (PS-1) and anterior pharynx-defective-1 (APH-1), as well as insulin degrading enzyme (IDE), a major Aß-degrading enzyme. IRN was also found to inhibit the phosphorylation of tau at the sites of Thr205 and Ser396. Immunofluorescence showed that IRN reduced the Aß deposition, and suppressed the activation of microglia (Iba-1) and astrocytes (GFAP) in the cerebral cortex and hippocampus of TgCRND8 mice. Furthermore, IRN was able to attenuate the ratios of p-c-Jun/c-Jun and p-JNK/JNK in the brains of TgCRND8 mice. IRN also showed marked inhibitory effect on JNK signaling pathway in the Aß-treated rat primary hippocampus neurons. We conclude that IRN improves cognitive impairment in TgCRND8 transgenic mice via reducing Aß generation and deposition, tau hyperphosphorylation and neuroinflammation through inhibiting the activation of JNK signaling pathway, and has good potential for further development into pharmacological treatment for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/tratamiento farmacológico , Oxindoles/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación/fisiología , Presenilina-1/metabolismo , Proteínas tau/metabolismo
13.
FASEB J ; 33(9): 10393-10408, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31233346

RESUMEN

Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, elicited distinct antidepressant-like activity in mice. The present study aimed to investigate the antidepressant-like effects of IRN in chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors in mice and to illustrate its possible mechanisms of action. The mice were subjected to CUMS for 6 wk and administered with IRN (20 or 40 mg/kg) daily by oral gavage for 3 wk. The PI3K/protein kinase B (Akt) inhibitor and glycogen synthase kinase-3ß (GSK-3ß) inhibitors were used to determine the involvement of the PI3K/Akt/GSK-3ß pathway in the antidepressant-like effects of IRN in the mice. The results showed that CUMS caused depression-like behaviors in the mice, such as behavioral despair by the forced swim test (FST) and anhedonia by the sucrose preference test. In addition, CUMS could significantly reduce the levels of nerve growth factor and brain-derived neurotrophic factor but markedly increase the release of TNF-α and IL-6 in the hippocampus and cerebral cortex of the mice. Western blotting analysis showed that CUMS markedly suppressed the levels of phosphorylated GSK-3ß (Ser9) and phosphorylated Akt (Ser473) but significantly enhanced the translocation of NF-κB p65 from cytosol to nuclei in the hippocampus and cerebral cortex of the mice. CUMS could also significantly increase the NF-κB binding activity in the hippocampus and cerebral cortex of the mice, whereas IRN treatment could significantly reverse the behavioral and biochemical changes induced by CUMS in the mice. Moreover, the antidepressant-like effect of IRN was completely abolished by the PI3K/Akt inhibitor. Combination treatment with IRN and GSK-3ß inhibitors in the mice exerted a synergistic anti-immobility action in the FST. The results of mechanistic investigations indicated that the antidepressant-like action of IRN was mediated, at least in part, by enhancing neurotrophins and attenuating neuroinflammation via modulating the PI3K/Akt/GSK-3ß pathway.-Xian, Y.-F., Ip, S.-P., Li, H.-Q., Qu, C., Su, Z.-R., Chen, J.-N., Lin, Z.-X. Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: involvement of the PI3K/Akt/GSK-3ß signaling pathway.


Asunto(s)
Depresión/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/tratamiento farmacológico , Oxindoles/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antidepresivos/farmacología , Depresión/inmunología , Depresión/metabolismo , Depresión/patología , Glucógeno Sintasa Quinasa 3 beta/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos ICR , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Estrés Psicológico
14.
Phytomedicine ; 50: 196-204, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30466979

RESUMEN

BACKGROUND: Sinapis Semen is derived from the dried mature seeds of Sinapis alba L. or Brassica juncea (L.) Czern. et Coss. Traditionally, the seeds from S. alba are called "White Sinapis Semen" while those from B. juncea are called "Yellow Sinapis Semen". PURPOSE: The present study aimed to compare the chemical composition and the anti-inflammatory effects of 50% aqueous ethanol extracts of the White Sinapis Semen (EWSS) and Yellow Sinapis Semen (EYSS) using both acute (12-O-tetradecanoylphorbol-acetate (TPA)- and arachidonic acid (AA)-induced mouse ear edema) and chronic (multiple applications of croton oil (CO)) inflammatory models. METHODS: The anti-inflammatory effects of EWSS and EYSS were determined by measuring the ear thickness and myeloperoxidase (MPO) activity. The anti-inflammatory mechanism was explored by measuring the protein and mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in the ear of the TPA-treated mice. RESULTS: The results showed that both EWSS and EYSS significantly decreased the ear thickness in both the TPA- and AA-induced acute models, as well as in the CO-induced chronic model. In addition, EWSS and EYSS could markedly inhibit the MPO activity in the ears of TPA-, AA- or CO-treated mice. Moreover, EWSS and EYSS also remarkably inhibited the protein and mRNA levels of TNF-α and IL-6 in the ears of TPA-treated mice. Comparatively, EWSS exerted more potent anti-inflammatory effect than that of EYSS. CONCLUSION: Our results revealed that both EWSS and EYSS are effective anti-inflammatory agents against acute and chronic inflammatory processes, and EWSS possess more potent anti-inflammatory effect than EYSS. The anti-inflammatory effect of the two herbs may be mediated, at least in part, by suppressing the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-6 and IL-1ß.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Planta de la Mostaza/química , Extractos Vegetales/farmacología , Sinapis/química , Animales , Ácido Araquidónico , China , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Peroxidasa/metabolismo , Semillas/química , Acetato de Tetradecanoilforbol , Factor de Necrosis Tumoral alfa/metabolismo
15.
Molecules ; 23(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149578

RESUMEN

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405⁻85,557 bp), small single-copy regions (SSC; 18,550⁻18,768 bp), and a pair of inverted repeats (IRs; 25,576⁻25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39⁻53 long repeats and 79⁻91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


Asunto(s)
Genoma del Cloroplasto , Sanguisorba/clasificación , Sanguisorba/genética , Composición de Base , Codón , Biología Computacional/métodos , Exones , Variación Genética , Genómica/métodos , Intrones , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Filogenia
16.
Chin Med ; 13: 29, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946349

RESUMEN

BACKGROUND: To evaluate the effect of Isorhynchophylline (IRN) on the learning and memory impairments induced by aluminum chloride (AlCl3) in mice. METHODS: Fifty male Balb-c mice (4-month-old) were randomly divided into five groups: control, AlCl3 plus vehicle, AlCl3 plus IRN (20 mg/kg), AlCl3 plus IRN (40 mg/kg) and AlCl3 plus donepezil (5 mg/kg). Learning and memory impairments were induced in mice by subcutaneously injecting with AlCl3 (50 mg/kg) once a day for 8 consecutive weeks. At the same time, mice were intragastrically given vehicle or IRN (20 and 40 mg/kg) or donepezil (5 mg/kg) 30 min before each AlCl3 injection. The spatial learning and memory function was assessed using radial arm maze. After sacrificed, the parameters of oxidative stress and cholinergic system in the brain tissues were examined with ELISA kits. Moreover, the expression of nuclear factor kappa B (NF-κB) signaling pathway was analyzed with western blotting. RESULTS: The results showed that treatment with IRN could significantly ameliorate the cognitive deficits induced by AlCl3 in mice. In addition, treatment with IRN was found to reduce the level of malondialdehyde, enhance the activities of superoxide dismutases and catalase, increase the level of glutathione, and markedly inhibit the activity of acetylcholinesterase (AChE) in the brain tissues of the AlCl3-treated mice. Moreover, IRN significantly suppressed the phosphorylation of NF-κB p65 and IκBα in the brain tissues of AlCl3-treated mice. However, IRN did not show significant effect on the activity of butyrylcholinesterase. CONCLUSION: Our findings demonstrated for the first time that IRN could alleviate learning and memory impairments induced by AlCl3 in mice. The neuroprotective effect of IRN against AlCl3-induced AD is probably mediated, at least in part, through inhibiting the AChE activity and reducing the oxidative damage of brain tissue via suppress the NF-κB signaling pathway. These results contributed to a better understanding of the in vivo anti-AD mechanism of IRN. It was concluded that IRN could protect the learning and memory function.

17.
Int J Mol Med ; 41(3): 1447-1454, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29328398

RESUMEN

Colorectal cancer (CRC) is a common and life­threatening type of malignant cancer, which is associated with a high mortality rate. Cisplatin (CDDP) is a commonly used chemotherapy drug with significant side effects. Brusatol (BR) is one of the principal chemical compounds isolated from the Chinese herb Bruceae Fructus, which has been reported to markedly inhibit the proliferation of numerous cancer cell lines. The present study aimed to investigate the possible synergistic anticancer effects of CDDP combined with BR on CT­26 cells, and to evaluate the underlying mechanisms of action. The growth inhibitory effects of BR, CDDP, and BR and CDDP cotreatment on CT­26 cells were assessed by MTT assay. Cell apoptosis were determined by flow cytometry and western blot analysis. The results indicated that compared with single­agent treatment, cotreatment of CT­26 cells with CDDP and BR synergistically inhibited cell proliferation and increased cellular apoptosis. Furthermore, treatment of CT­26 cells with CDDP and BR resulted in a marked increase in the release of cytosolic cytochrome c, decreased expression of procaspase­3 and procaspase­9, and upregulation of the B­cell lymphoma 2 (Bcl­2)­associated X protein/Bcl­2 ratio compared with treatment with BR or CDDP alone. These results strongly suggested that the combination of CDDP and BR was able to produce a synergistic antitumor effect in CRC cells, thus providing a solid foundation for further development of this combination regimen into an effective therapeutic method for CRC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Neoplasias Colorrectales/patología , Cuassinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Neoplasias Colorrectales/genética , Citocromos c/metabolismo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Concentración 50 Inhibidora , Ratones , Cuassinas/química , Proteína X Asociada a bcl-2/metabolismo
18.
Front Pharmacol ; 8: 936, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311937

RESUMEN

Brucein D (BD), a major active quassinoid in Brucea javanica, has exhibited pronounced anticancer activities. However, the biologic mechanisms have not been fully explored. In this study, BD exhibited more potent cytotoxic effect on pancreatic cancer (PanCa) cell lines, while exerted weaker cytotoxic effects on GES-1 cells (non-tumorigenic). BD was shown to elicit apoptosis through inducing both the intrinsic and extrinsic mitochondria-mediated caspase activations. Furthermore, the BD-induced apoptotic effects were dependent on the accumulated reactive oxygen species (ROS) and inactivation of PI3K/Akt signaling pathway. Pretreatment with tempol completely prevented the cellular apoptosis induced by BD, and recovered the inactivation of AKT, which suggested ROS essentially involved in BD-elicited apoptosis and down-regulation of PI3K/Akt pathway. In addition, the results obtained from orthotopic xenograft in nude mice were congruent with those of the in vitro investigations. These results support the notion that BD held good potential to be further developed into an effective pharmaceutical agent for the treatment of PanCa.

19.
Neurochem Res ; 42(2): 678-685, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27900600

RESUMEN

Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/psicología , Alcaloides Indólicos/uso terapéutico , Uncaria , Animales , Antidepresivos/farmacología , Depresión/metabolismo , Relación Dosis-Respuesta a Droga , Suspensión Trasera/efectos adversos , Suspensión Trasera/psicología , Inmovilización/efectos adversos , Alcaloides Indólicos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Oxindoles , Distribución Aleatoria , Natación/psicología , Resultado del Tratamiento
20.
Neurochem Int ; 97: 8-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27131736

RESUMEN

Beta-amyloid (Aß) accumulation, one of the most important pathogenic traits of Alzheimer's disease (AD), has been reported to induce neurotoxicity in vitro as well as in vivo. Honokiol, isolated from the bark of Magnolia officinalis, has neuroprotective effects in different models of AD in vivo and in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of honokiol against Aß1-42-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results revealed that honokiol protected PC12 cells from Aß1-42 induced cytotoxicity with increases in cell viability, GSH production and Bcl-2 expression, but decreases in the release of lactate dehydrogenase and cytochrome c, the amount of DNA fragmentation and MDA level, as well as Bax expression. Mechanistic study showed that honokiol could inhibit the activation of glycogen synthase kinase (GSK)-3ß, attenuate the nuclear accumulation of ß-catenin and suppress the phosphorylation of ß-catenin (Ser33/Ser37/Thr41 site) in the Aß1-42-treated PC12 cells. These results indicate that the anti-oxidative and anti-apoptotic effects of honokiol in Aß1-42-treated PC12 cells may be mediated, at least in part, by regulation the GSK-3ß and ß-catenin signaling pathways.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Compuestos de Bifenilo/farmacología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Lignanos/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Transducción de Señal/efectos de los fármacos , beta Catenina/antagonistas & inhibidores , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células PC12 , Ratas , Transducción de Señal/fisiología , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...