Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2219897120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459550

RESUMEN

The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.


Asunto(s)
Variaciones en el Número de Copia de ADN , Infecciones por Mycoplasma , Mycoplasma fermentans/genética , Homocigoto , Infecciones por Mycoplasma/genética , Infecciones por Mycoplasma/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL
3.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35822842

RESUMEN

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , División del ADN , ADN de Cadena Simple/genética
4.
Infect Dis Rep ; 14(3): 278-286, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35645213

RESUMEN

Low serum albumin (SA) correlates with mortality in critically ill patients, including those with COVID-19. We aimed to identify SA thresholds to predict the risk of longer hospital stay, severe respiratory failure, and death in hospitalized adult patients with COVID-19 pneumonia. A prospective longitudinal study was conducted at the Infectious Diseases Unit of Trieste University Hospital (Italy) between March 2020 and June 2021. The evaluated outcomes were: (1) need of invasive mechanical ventilation (IMV); (2) length of hospital stay (LOS); and (3) 90-day mortality rate. We enrolled 864 patients. Hypoalbuminemia (<3.5 g/dL) was detected in 586 patients (67.8%). SA on admission was significantly lower in patients who underwent IMV (2.9 vs. 3.4 g/dL; p < 0.001). The optimal SA cutoff predicting the need of IMV was 3.17 g/dL (AUC 0.688; 95% CI: 0.618−0.759; p < 0.001) and this threshold appeared as an independent risk factor for the risk of IMV in multivariate Cox regression analysis. The median LOS was 12 days and a higher SA was predictive for a shorter LOS (p < 0.001). The overall 90-day mortality rate was 15%. SA was significantly lower in patients who died within 90 days from hospital admission (3.1 g/dL; IQR 2.8−3.4; p < 0.001) as compared to those who survived (3.4 g/dL; IQR 3.1−3.7). The optimal SA threshold predicting high risk of 90-day mortality was 3.23 g/dL (AUC 0.678; 95% CI: 0.629−0.734; p < 0.001). In a multivariate Cox regression analysis, SA of <3.23 g/dL appeared to be an independent risk factor for 90-day mortality. Our results suggest that low SA on admission may identify patients with COVID-19 pneumonia at higher risk of severe respiratory failure, death, and longer LOS. Clinicians could consider 3.2 g/dL as a prognostic threshold for both IMV and mortality in hospitalized COVID-19 patients.

5.
J Transl Med ; 20(1): 231, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581584

RESUMEN

BACKGROUND: According to international guidelines, Human Papillomavirus (HPV) DNA tests represent a valid alternative to Pap Test for primary cervical cancer screening, provided that they guarantee balanced clinical sensitivity and specificity for cervical intraepithelial neoplasia grade 2 or more (CIN2+) lesions. The study aimed to assess whether HPV Selfy (Ulisse BioMed - Trieste, Italy), a full-genotyping HPV DNA test that detects and differentiates 14 high-risk HPV (HR-HPV) types, meets the criteria for primary cervical cancer screening described in the international guidelines, on clinician-collected as well as on self-collected samples. METHODS: For each participant woman, consecutively referring to Azienda Sanitaria Universitaria Giuliano Isontina (Trieste, Italy) and CRO-National Cancer Institute (Aviano, Italy) for the cervical cancer screening program, the following samples were tested: (a) a clinician-collected cervical specimen, analyzed with the reference test (Hybrid Capture®2 test, HC2) and HPV Selfy; and (b) a self-collected vaginal sample, analyzed with HPV Selfy. Enrolled women were also asked to fulfill a questionnaire about self-sampling acceptability. As required by guidelines, a non-inferiority test was conducted to compare the clinical performance of the test under evaluation with its reference test. RESULTS: HPV Selfy clinical sensitivity and specificity resulted non-inferior to those of HC2. By analysis of a total of 889 cervical liquid-based cytology samples from a screening population, of which 98 were from women with CIN2+, HPV Selfy showed relative sensitivity and specificity for CIN2+ of 0.98 and 1.00 respectively (non-inferiority score test: P = 0.01747 and P = 0.00414, respectively); the test reached adequate intra- and inter-laboratory reproducibility. Moreover, we demonstrated that the performance of HPV Selfy on self-collected vaginal samples was non-inferior to the performance obtained on clinician-collected cervical specimen (0.92 relative sensitivity and 0.97 relative specificity). Finally, through HPV Selfy genotyping, we were able to describe HPV types prevalence in the study population. CONCLUSIONS: HPV Selfy fulfills all the requirements of the international Meijer's guidelines and has been clinically validated for primary cervical cancer screening purposes. Moreover, HPV Selfy has also been validated for self-sampling according to VALHUDES guidelines. Therefore, at date, HPV Selfy is the only full-genotyping test validated both for screening purposes and for self-sampling. Trial registration ASUGI Trieste n. 16008/2018; CRO Aviano n.17149/2018.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Detección Precoz del Cáncer/métodos , Femenino , Genotipo , Humanos , Tamizaje Masivo , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Neoplasias del Cuello Uterino/diagnóstico
6.
Biomedicines ; 10(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35203473

RESUMEN

Acetylsalicylic acid (ASA) is one of the most commonly used drugs in the world. It derives from the extract of white willow bark, whose therapeutic potential was known in Egypt since 1534 BC. ASA's pharmacological effects are historically considered secondary to its anti-inflammatory, platelet-inhibiting properties; however, human studies demonstrating a pro-inflammatory effect of ASA exist. It is likely that we are aware of only part of ASA's mechanisms of action; moreover, the clinical effect is largely dependent on dosages. During the past few decades, evidence of the anti-infective properties of ASA has emerged. We performed a review of such research in order to provide a comprehensive overview of ASA and viral, bacterial, fungal and parasitic infections, as well as ASA's antibiofilm properties.

7.
ACS Sens ; 5(10): 3109-3115, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32909731

RESUMEN

We demonstrate here a homogeneous assay, named NanoHybrid, for monoclonal antibody quantification directly in serum samples in a single-step format. NanoHybrid is composed of both synthetic peptide nucleic acids (PNAs) and nucleic acid strands conjugated to recognition elements and optical labels and is designed to allow fast fluorescence quantification of a therapeutic antibody. More specifically, we have characterized our analytical assay for the detection of trastuzumab (Herceptin), a monoclonal antibody (mAb) drug used for breast cancer treatment and for tumors overexpressing the HER2/neu protein. We show here that NanoHybrid is capable of performing fast drug quantification directly in blood serum. The results obtained with a pool of samples from breast cancer patients under trastuzumab treatment are compared with CE-IVD ELISA (enzyme-linked immunosorbent assay) showing a good agreement (Cohen's K = 0.729). Due to the modular nature of the NanoHybrid platform, this technology can be programmed to potentially detect and quantify any antibody for which a high-affinity recognition element has been characterized. We envision the application of NanoHybrid in a point-of-care (POC) drug monitoring system based on disposable kits for therapeutic drug management.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Anticuerpos Monoclonales Humanizados , Análisis Costo-Beneficio , Humanos , Péptidos
8.
J Transl Med ; 18(1): 338, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32878627

RESUMEN

BACKGROUND: Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) caused the first coronavirus disease 2019 (COVID-19) outbreak in China and has become a public health emergency of international concern. SARS-CoV-2 outbreak has been declared a pandemic by WHO on March 11th, 2020 and the same month several Countries put in place different lockdown restrictions and testing strategies in order to contain the spread of the virus. METHODS: The calculation of the Case Fatality Rate of SARS-CoV-2 in the Countries selected was made by using the data available at https://github.com/owid/covi-19-data/tree/master/public/data . Case fatality rate was calculated as the ratio between the death cases due to COVID-19, over the total number of SARS-CoV-2 reported cases 14 days before. Standard Case Fatality Rate values were normalized by the Country-specific ρ factor, i.e. the number of PCR tests/1 million inhabitants over the number of reported cases/1 million inhabitants. Case-fatality rates between Countries were compared using proportion test. Post-hoc analysis in the case of more than two groups was performed using pairwise comparison of proportions and p value was adjusted using Holm method. We also analyzed 487 genomic sequences from the GISAID database derived from patients infected by SARS-CoV-2 from January 2020 to April 2020 in Italy, Spain, Germany, France, Sweden, UK and USA. SARS-CoV-2 reference genome was obtained from the GenBank database (NC_045512.2). Genomes alignment was performed using Muscle and Jalview software. We, then, calculated the Case Fatality Rate of SARS-CoV-2 in the Countries selected. RESULTS: In this study we analyse how different lockdown strategies and PCR testing capability adopted by Italy, France, Germany, Spain, Sweden, UK and USA have influenced the Case Fatality Rate and the viral mutations spread. We calculated case fatality rates by dividing the death number of a specific day by the number of patients with confirmed COVID-19 infection observed 14 days before and normalized by a ρ factor which takes into account the diagnostic PCR testing capability of each Country and the number of positive cases detected. We notice the stabilization of a clear pattern of mutations at sites nt241, nt3037, nt14408 and nt23403. A novel nonsynonymous SARS-CoV-2 mutation in the spike protein (nt24368) has been found in genomes sequenced in Sweden, which enacted a soft lockdown strategy. CONCLUSIONS: Strict lockdown strategies together with a wide diagnostic PCR testing of the population were correlated with a relevant decline of the case fatality rate in different Countries. The emergence of specific patterns of mutations concomitant with the decline in case fatality rate needs further confirmation and their biological significance remains unclear.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Mutación/genética , Neumonía Viral/mortalidad , Neumonía Viral/virología , COVID-19 , Europa (Continente)/epidemiología , Genoma Viral , Geografía , Humanos , América del Norte/epidemiología , Pandemias , SARS-CoV-2 , Análisis de Secuencia de ADN
10.
J Transl Med ; 18(1): 251, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576227

RESUMEN

BACKGROUND: With the aim of providing a dynamic evaluation of the effects of basic environmental parameters on COVID-19-related death rate, we assessed the correlation between average monthly high temperatures and population density, with death/rate (monthly number of deaths/1 M people) for the months of March (start of the analysis and beginning of local epidemic in most of the Western World, except in Italy where it started in February) and April 2020 (continuation of the epidemic). Different geographical areas of the Northern Hemisphere in the United States and in Europe were selected in order to provide a wide range among the different parameters. The death rates were gathered from an available dataset. As a further control, we also included latitude, as a proxy for temperature. METHODS: Utilizing a publicly available dataset, we retrieved data for the months of March and April 2020 for 25 areas in Europe and in the US. We computed the monthly number of deaths/1 M people of confirmed COVID-19 cases and calculated the average monthly high temperatures and population density for all these areas. We determined the correlation between number of deaths/1 M people and the average monthly high temperatures, the latitude and the population density. RESULTS: We divided our analysis in two parts: analysis of the correlation among the different variables in the month of March and subsequent analysis in the month of April. The differences were then evaluated. In the month of March there was no statistical correlation between average monthly high temperatures of the considered geographical areas and number of deaths/1 M people. However, a statistically significant inverse correlation became significant in the month of April between average monthly high temperatures (p = 0.0043) and latitude (p = 0.0253) with number of deaths/1 M people. We also observed a statistically significant correlation between population density and number of deaths/1 M people both in the month of March (p = 0.0297) and in the month of April (p = 0.0116), when three areas extremely populated (NYC, Los Angeles and Washington DC) were included in the calculation. Once these three areas were removed, the correlation was not statistically significant (p = 0.1695 in the month of March, and p = 0.7076 in the month of April). CONCLUSIONS: The number of COVID-19-related deaths/1 M people was essentially the same during the month of March for all the geographical areas considered, indicating essentially that the infection was circulating quite uniformly except for Lombardy, Italy, where it started earlier. Lockdown measures were implemented between the end of March and beginning of April, except for Italy which started March 9th. We observed a strong, statistically significant inverse correlation between average monthly high temperatures with the number of deaths/1 M people. We confirmed the data by analyzing the correlation with the latitude, which can be considered a proxy for high temperature. Previous studies indicated a negative effect of high climate temperatures on Sars-COV-2 spreading. Our data indicate that social distancing measure are more successful in the presence of higher average monthly temperatures in reducing COVID-19-related death rate, and a high level of population density seems to negatively impact the effect of lockdown measures.


Asunto(s)
Infecciones por Coronavirus/mortalidad , Ambiente , Mortalidad , Neumonía Viral/mortalidad , Temperatura , Betacoronavirus/fisiología , COVID-19 , Infecciones por Coronavirus/epidemiología , District of Columbia/epidemiología , Monitoreo del Ambiente/métodos , Europa (Continente)/epidemiología , Geografía , Humanos , Italia/epidemiología , Los Angeles/epidemiología , Ciudad de Nueva York/epidemiología , Pandemias , Neumonía Viral/epidemiología , Densidad de Población , SARS-CoV-2 , Conducta Social
11.
Angew Chem Int Ed Engl ; 59(35): 14973-14978, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32392398

RESUMEN

Easy-to-use platforms for rapid antibody detection are likely to improve molecular diagnostics and immunotherapy monitoring. However, current technologies require multi-step, time-consuming procedures that limit their applicability in these fields. Herein, we demonstrate effective molarity-driven electrochemical DNA-based detection of target antibodies. We show a highly selective, signal-on DNA-based sensor that takes advantage of antibody-binding-induced increase of local concentration to detect clinically relevant antibodies in blood serum. The sensing platform is modular, rapid, and versatile and allows the detection of both IgG and IgE antibodies. We also demonstrate the possible use of this strategy for the monitoring of therapeutic monoclonal antibodies in body fluids. Our approach highlights the potential of harnessing effective molarity for the design of electrochemical sensing strategies.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Técnicas Biosensibles/métodos , ADN/química , Técnicas Electroquímicas/métodos , Humanos
12.
J Transl Med ; 18(1): 179, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321524

RESUMEN

BACKGROUND: SARS-CoV-2 is a RNA coronavirus responsible for the pandemic of the Severe Acute Respiratory Syndrome (COVID-19). RNA viruses are characterized by a high mutation rate, up to a million times higher than that of their hosts. Virus mutagenic capability depends upon several factors, including the fidelity of viral enzymes that replicate nucleic acids, as SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Mutation rate drives viral evolution and genome variability, thereby enabling viruses to escape host immunity and to develop drug resistance. METHODS: We analyzed 220 genomic sequences from the GISAID database derived from patients infected by SARS-CoV-2 worldwide from December 2019 to mid-March 2020. SARS-CoV-2 reference genome was obtained from the GenBank database. Genomes alignment was performed using Clustal Omega. Mann-Whitney and Fisher-Exact tests were used to assess statistical significance. RESULTS: We characterized 8 novel recurrent mutations of SARS-CoV-2, located at positions 1397, 2891, 14408, 17746, 17857, 18060, 23403 and 28881. Mutations in 2891, 3036, 14408, 23403 and 28881 positions are predominantly observed in Europe, whereas those located at positions 17746, 17857 and 18060 are exclusively present in North America. We noticed for the first time a silent mutation in RdRp gene in England (UK) on February 9th, 2020 while a different mutation in RdRp changing its amino acid composition emerged on February 20th, 2020 in Italy (Lombardy). Viruses with RdRp mutation have a median of 3 point mutations [range: 2-5], otherwise they have a median of 1 mutation [range: 0-3] (p value < 0.001). CONCLUSIONS: These findings suggest that the virus is evolving and European, North American and Asian strains might coexist, each of them characterized by a different mutation pattern. The contribution of the mutated RdRp to this phenomenon needs to be investigated. To date, several drugs targeting RdRp enzymes are being employed for SARS-CoV-2 infection treatment. Some of them have a predicted binding moiety in a SARS-CoV-2 RdRp hydrophobic cleft, which is adjacent to the 14408 mutation we identified. Consequently, it is important to study and characterize SARS-CoV-2 RdRp mutation in order to assess possible drug-resistance viral phenotypes. It is also important to recognize whether the presence of some mutations might correlate with different SARS-CoV-2 mortality rates.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Evolución Molecular , Genoma Viral/genética , Mutación , Neumonía Viral/epidemiología , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/genética , Adulto , Asia/epidemiología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/mortalidad , Farmacorresistencia Viral/genética , Europa (Continente)/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Mutación , América del Norte/epidemiología , Oceanía/epidemiología , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/mortalidad , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2
13.
Anal Chem ; 90(13): 8196-8201, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29874046

RESUMEN

The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.


Asunto(s)
Anticuerpos/inmunología , Técnicas Biosensibles/métodos , Sondas de ADN/química , Inmunoensayo/métodos , Animales , Secuencia de Bases , Técnicas Biosensibles/economía , Análisis Costo-Beneficio , Sondas de ADN/genética , Inmunoensayo/economía , Ácido Kaínico/análogos & derivados , Ácido Kaínico/análisis , Ácido Kaínico/inmunología , Límite de Detección , Factores de Tiempo
14.
J Am Chem Soc ; 140(3): 947-953, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29313682

RESUMEN

Antibody detection plays a pivotal role in the diagnosis of pathogens and monitoring the success of vaccine immunization. However, current serology techniques require multiple, time-consuming washing and incubation steps, which limit their applicability in point-of-care (POC) diagnostics and high-throughput assays. We developed here a nucleic acid nanoswitch platform able to instantaneously measure immunoglobulins of type G and E (IgG and IgE) levels directly in blood serum and other bodily fluids. The system couples the advantages of target-binding induced colocalization and nucleic acid conformational-change nanoswitches. Due to the modular nature of the recognition platform, the method can potentially be applied to the detection of any antibody for which an antigen can be conjugated to a nucleic acid strand. In this work we show the sensitive, fast and cost-effective detection of four different antibodies and demonstrate the possible use of this approach for the monitoring of antibody levels in HIV+ patients immunized with AT20 therapeutic vaccine.


Asunto(s)
Técnicas Biosensibles/métodos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Nanoestructuras/química , Ácidos Nucleicos/química , Técnicas Biosensibles/economía , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/sangre , Humanos , Límite de Detección , Conformación de Ácido Nucleico , Sistemas de Atención de Punto/economía
15.
Biotechnol Adv ; 35(1): 51-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27923765

RESUMEN

Novel technologies and strategies for sensitive detection of biological responses in healthcare, food and environmental monitoring continue to be a priority. The present review focuses on bioassay development based on the simultaneous use of quantum dots and magnetic beads. Due to the outstanding characteristics of both particles for biosensing applications and the large number of publications using a combined approach, we aim to provide a comprehensive overview of the literature on different bioassays, the most recent advances and innovative strategies on the topic, together with an analysis of the main drawbacks encountered and potential solutions offered, with a special emphasis on the requirements that the transfer of technologies from the laboratory to the market will demand for future commercialization of biodevices. Several procedures used in immunoassays and nucleic acid-based bioassays for the detection of pathogens and biomarkers are discussed. The improvement of current approaches together with novel multiplex detection systems and nanomaterials-based research, including the use of multimodal nanoparticles, will contribute to simpler and more sensitive bioanalyses.


Asunto(s)
Bioensayo , Técnicas Biosensibles , Inmunoensayo , Nanopartículas de Magnetita , Puntos Cuánticos
16.
Proc Natl Acad Sci U S A ; 112(36): 11276-81, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305933

RESUMEN

Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.


Asunto(s)
Dependovirus/genética , Genoma Humano/genética , Interferencia de ARN , Transducción Genética , Animales , Línea Celular , Línea Celular Tumoral , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Hígado/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...