Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 1): 135699, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288860

RESUMEN

Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.

2.
Plants (Basel) ; 13(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339618

RESUMEN

Industrial waste and sewage deposit heavy metals into the soil, where they can remain for long periods. Although there are several methods to manage heavy metals in agricultural soil, microorganisms present a promising and effective solution for their detoxification. We isolated a rhizofungus, Aspergillus terreus (GenBank Acc. No. KT310979.1), from Parthenium hysterophorus L., and investigated its growth-promoting and metal detoxification capabilities. The isolated fungus was evaluated for its ability to mitigate lead (25 and 75 ppm) and copper (100 and 200 ppm) toxicity in Triticum aestivum L. seedlings. The experiment utilized a completely randomized design with three replicates for each treatment. A. terreus successfully colonized the roots of wheat seedlings, even in the presence of heavy metals, and significantly enhanced plant growth. The isolate effectively alleviates lead and copper stress in wheat seedlings, as evidenced by increases in shoot length (142%), root length (98%), fresh weight (24%), dry weight (73%), protein content (31%), and sugar content (40%). It was observed that wheat seedlings possess a basic defense system against stress, but it was insufficient to support normal growth. Fungal inoculation strengthened the host's defense system and reduced its exposure to toxic heavy metals. In treated seedlings, exposure to heavy metals significantly upregulated MT1 gene expression, which aided in metal detoxification, enhanced antioxidant defenses, and maintained metal homeostasis. A reduction in metal exposure was observed in several areas, including normalizing the activities of antioxidant enzymes that had been elevated by up to 67% following exposure to Pb (75 mg/kg) and Cu (200 mg/kg). Heavy metal exposure elevated antioxidant levels but also increased ROS levels by 86%. However, with Aspergillus terreus colonization, ROS levels stayed within normal ranges. This decrease in ROS was associated with reduced malondialdehyde (MDA) levels, enhanced membrane stability, and restored root architecture. In conclusion, rhizofungal colonization improved metal tolerance in seedlings by decreasing metal uptake and increasing the levels of metal-binding metallothionein proteins.

3.
Heliyon ; 10(17): e36797, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39319123

RESUMEN

Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 µg/mL), followed by F20 (69.19 ± 0.61 µg/mL) and F52 (75.06 ± 0.45 µg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.

4.
Heliyon ; 10(15): e35501, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170427

RESUMEN

The pervasive issue of heavy metal contamination in agricultural lands poses significant concerns and has wide-ranging implications for ecosystems. However, an encouraging solution lies in exploiting the potential of fungal endophytes to alleviate these detrimental effects. This study emphasized on improving the growth-promoting and chromium-alleviating capabilities of fungal endophytes, particularly Aspergillus sojae strain SH20, through ultraviolet (UV) irradiation. Following UV treatment, SH20 exhibited significantly enhanced growth-promoting and chromium-alleviating capabilities in comparison to its non-irradiated counterpart. Distinctly, the UV-treated SH20 strain demonstrated an improved ability to accumulate and reduce toxic chromate in the soil, effectively addressing the growth constraints imposed by elevated chromium levels in Brassica napus L. The UV-irradiated SH20 variant boosted shoot length up to 3 times that of the control. Similarly, this fungal strain displayed a remarkable increase in the total fresh weight of the seedlings, recording nearly 17 times greater than the control. The isolate treated with UV light reduced the absorption of chromium by about 3 times in the roots, helping the young plants to grow well even when exposed to chromate stress. A drop in root colonization by the UV-treated strain further resulted in reduced chromate absorption by the roots. Also, the strain showed great skill in boosting the host's antioxidant defenses by reducing the buildup of harmful reactive oxygen species (ROS), increasing the removal of ROS, and improving the plant's antioxidant levels, including phenols and flavonoids. When the host plants were exposed to 25 ppm of Cr stress, the UV-irradiated variant SH 20 stimulated the production of flavonoids (246 µg/ml) and phenols (952 µg/ml) in comparison to the control (with 220 µg/ml of flavonoids and 919 µg/ml of phenols). In conclusion, this report highlights how exposing the A. sojae strain SH20 to UV light has the potential to enhance its abilities to promote growth and bioremediate. This suggests a promising solution for addressing heavy metal contamination in agricultural lands.

5.
Drugs Context ; 132024.
Artículo en Inglés | MEDLINE | ID: mdl-38989131

RESUMEN

Background: Epilepsy is a persistent tendency to experience epileptic seizures and can lead to various neurobiological disorders, with an elevated risk of premature mortality. This study evaluates the efficacy of brivaracetam adjuvant therapy in patients with epilepsy. Methods: A prospective observational multicentre study that was conducted in Pakistan from March to September 2022, by using a non-probability convenience sampling technique. The population consisted of 543 individuals with a diagnosis of epilepsy for whom adjunctive brivaracetam (Brivera; manufactured by Helix Pharma Pvt Ltd., Sindh, Pakistan) was recommended by the treating physician. The research sample was drawn from various private neurology clinics of Karachi, Lahore, Rawalpindi, Islamabad and Peshawar. Data originating from routine patient visits, and assessments at three study time points, were recorded in the study case report form. Results: Across 18 clinical sites, 543 individuals participated, with a mean age of 32.9 years. The most prescribed dosages were 50 mg BD, followed by 100 mg BD. Notably, brivaracetam combined with divalproex sodium was the most prevalent treatment, followed by brivaracetam with levetiracetam. At both the 14th and 90th day assessments, a significant reduction in seizure frequency was observed, with 63.1% of individuals showing a favourable response by day 90. Treatment-naive individuals exhibited higher rates of seizure freedom and response compared with treatment-resistant individuals. Conclusions: The study demonstrates the effectiveness of brivaracetam combination therapy in epilepsy management, with notable reductions in seizure frequency and favourable clinical responses observed, particularly in treatment-naive individuals.

6.
Front Plant Sci ; 15: 1391348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952849

RESUMEN

Introduction: Arsenate, a metalloid, acting as an analog to phosphate, has a tendency to accumulate more readily in plant species, leading to adverse effects. Methods: In the current study, sunflower seedlings were exposed to 25, 50 and 100 ppm of the arsenic. Results: Likewise, a notable reduction (p<0.05) was observed in the relative growth rate (RGR) by 4-folds and net assimilation rate (NAR) by 75% of Helianthus annuus when subjected to arsenic (As) stress. Nevertheless, the presence of Staphylococcus arlettae, a plant growth-promoting rhizobacterium with As tolerance, yielded an escalation in the growth of H. annuus within As-contaminated media. S. arlettae facilitated the conversion of As into a form accessible to plants, thereby, increasing its uptake and subsequent accumulation in plant tissues. S. arlettae encouraged the enzymatic antioxidant systems (Superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT)) and non-enzymatic antioxidants (flavonoids, phenolics, and glutathione) in H. annuus seedlings following substantial As accumulation. The strain also induced the host plant to produce osmolytes like proline and sugars, mitigating water loss and maintaining cellular osmotic balance under As-induced stress. S. arlettae rectified imbalances in lignin content, reduced high malonaldehyde (MDA) levels, and minimized electrolyte leakage, thus counteracting the toxic impacts of the metal. Conclusion: The strain exhibited the capability to concurrently encourage plant growth and remediate Ascontaminated growth media through 2-folds rate of biotransformation and bio-mobilization.

7.
Heliyon ; 10(12): e33078, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988560

RESUMEN

The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.

8.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065806

RESUMEN

Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.

9.
Pharmaceuticals (Basel) ; 17(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38931372

RESUMEN

Diabetes mellitus is a heterogeneous metabolic disorder that poses significant health and economic challenges across the globe. Polysaccharides, found abundantly in edible plants, hold promise for managing diabetes by reducing blood glucose levels (BGL) and insulin resistance. However, most of these polysaccharides cannot be digested or absorbed directly by the human body. Here we report the production of antidiabetic oligosaccharides from cress seed mucilage polysaccharides using yeast fermentation. The water-soluble polysaccharides extracted from cress seed mucilage were precipitated using 75% ethanol and fermented with Pichia pastoris for different time intervals. The digested saccharides were fractionated through gel permeation chromatography using a Bio Gel P-10 column. Structural analysis of the oligosaccharide fractions revealed the presence of galacturonic acid, rhamnose, glucuronic acid, glucose and arabinose. Oligosaccharide fractions exhibited the potential to inhibit α-amylase and α-glucosidase enzymes in a dose-dependent manner in vitro. The fraction DF73 exhibited strong inhibitory activity against α-amylase with IC50 values of 38.2 ± 1.12 µg/mL, compared to the positive control, acarbose, having an IC50 value of 29.18 ± 1.76 µg/mL. Similarly, DF72 and DF73 showed the highest inhibition of α-glucosidase, with IC50 values of 9.26 ± 2.68 and 50.47 ± 5.18 µg/mL, respectively. In in vivo assays in streptozotocin (STZ)-induced diabetic mice, these oligosaccharides significantly reduced BGL and improved lipid profiles compared to the reference drug metformin. Histopathological observations of mouse livers indicated the cytoprotective effects of these sugars. Taken together, our results suggest that oligosaccharides produced through microbial digestion of polysaccharides extracted from cress seed mucilage have the potential to reduce blood glucose levels, possibly through inhibition of carbohydrate-digesting enzymes and regulation of the various signaling pathways.

10.
PLoS One ; 19(6): e0303890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843255

RESUMEN

Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Análisis Multivariante , Aprendizaje Profundo , Factores de Tiempo
11.
Front Plant Sci ; 15: 1353352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689842

RESUMEN

Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.

12.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732932

RESUMEN

In this paper, a 3D conformal meta-lens designed for manipulating electromagnetic beams via height-to-phase control is proposed. The structure consists of a 40 × 20 array of tunable unit cells fabricated using 3D printing, enabling full 360° phase compensation. A novel automatic synthesizing method (ASM) with an integrated optimization process based on genetic algorithm (GA) is adopted here to create the meta-lens. Simulation using CST Microwave Studio and MATLAB reveals the antenna's beam deflection capability by adjusting phase compensations for each unit cell. Various beam scanning techniques are demonstrated, including single-beam, dual-beam generation, and orbital angular momentum (OAM) beam deflection at different angles of 0°, 10°, 15°, 25°, 30°, and 45°. A 3D-printed prototype of the dual-beam feature has been fabricated and measured for validation purposes, with good agreement between both simulation and measurement results, with small discrepancies due to 3D printing's low resolution and fabrication errors. This meta-lens shows promise for low-cost, high-gain beam deflection in mm-wave wireless communication systems, especially for sensing applications, with potential for wider 2D beam scanning and independent beam deflection enhancements.

14.
Front Plant Sci ; 15: 1364945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628364

RESUMEN

Introduction: Fresh Aareca nut fruit for fresh fruit chewing commonly found in green or dark green hues. Despite its economic significance, there is currently insufficient research on the study of color and luster of areca. And the areca nut fruits after bagging showed obvious color change from green to tender yellow. In the study, we tried to explain this interesting variation in exocarp color. Methods: Fruits were bagged (with a double-layered black interior and yellow exterior) 45 days after pollination and subsequently harvested 120 days after pollination. In this study, we examined the the chlorophyll and carotenoid content of pericarp exocarp, integrated transcriptomics and metabolomics to study the effects of bagging on the carotenoid pathway at the molecular level. Results: It was found that the chlorophyll and carotenoid content of bagged areca nut (YP) exocarp was significantly reduced. A total of 21 differentially expressed metabolites (DEMs) and 1784 differentially expressed genes (DEGs) were screened by transcriptomics and metabolomics. Three key genes in the carotenoid biosynthesis pathway as candidate genes for qPCR validation by co-analysis, which suggested their role in the regulation of pathways related to crtB, crtZ and CYP707A. Discussion: We described that light intensity may appear as a main factor influencing the noted shift from green to yellow and the ensuing reduction in carotenoid content after bagging.

15.
Front Chem ; 12: 1374739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601886

RESUMEN

The iron-based biomass-supported catalyst has been used for Fischer-Tropsch synthesis (FTS). However, there is no study regarding the life cycle assessment (LCA) of biomass-supported iron catalysts published in the literature. This study discusses a biomass-supported iron catalyst's LCA for the conversion of syngas into a liquid fuel product. The waste biomass is one of the source of activated carbon (AC), and it has been used as a support for the catalyst. The FTS reactions are carried out in the fixed-bed reactor at low or high temperatures. The use of promoters in the preparation of catalysts usually enhances C5+ production. In this study, the collection of precise data from on-site laboratory conditions is of utmost importance to ensure the credibility and validity of the study's outcomes. The environmental impact assessment modeling was carried out using the OpenLCA 1.10.3 software. The LCA results reveals that the synthesis process of iron-based biomass supported catalyst yields a total impact score in terms of global warming potential (GWP) of 1.235E + 01 kg CO2 equivalent. Within this process, the AC stage contributes 52% to the overall GWP, while the preparation stage for the catalyst precursor contributes 48%. The comprehensive evaluation of the iron-based biomass supported catalyst's impact score in terms of human toxicity reveals a total score of 1.98E-02 kg 1,4-dichlorobenzene (1,4-DB) equivalent.

17.
Heliyon ; 10(3): e25385, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356584

RESUMEN

The aim of this study was to prepare poly-N-isopropylmethacrylamide-co-acrylic acid-acrylamide [p-(NIPMAM-co-AA-AAm)] via precipitation polymerization in an aqueous medium. Rhodium nanoparticles were formed in the microgel network by an in-situ reduction technique with the addition of sodium borohydride as a reducing agent. Pure p-(NIPMAM-co-AA-AAm) and hybrid microgels [Rh-(p-NIPMAM-co-AA-AAm)] microgels were examined by using UV-Visible, FTIR (Fourier Transform Infrared), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), DLS (Dynamic Light Scattering) and XRD (X-Ray Diffraction) techniques. The catalytic activities of the hybrid microgel [Rh-(p-NIPMAM-co-AA-AAm)] for the degradation of azo dyes such as alizarin yellow (AY), congo red (CR), and methyl orange (MO) were compared and the mechanism of the catalytic action by this system was examined. Various parameters including the catalyst amount and dye concentration influenced the catalytic decomposition of azo dyes. In order to maximize the reaction conditions for the dye's quick and efficient decomposition, the reaction process was monitored by spectroscopic analysis. The rate constants for reductive degradation of azo dyes were measured under various conditions. When kapp values were compared for dyes, it was found that [Rh-(p-NIPMAM-co-AA-AAm)] hybrid microgels showed superior activity for the degradation of MO dyes compared to the reductive degradation of CR and AY.

18.
Food Chem (Oxf) ; 8: 100190, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38259870

RESUMEN

Sugar and fatty acid content are among the important factors that contribute to the intensity of flavor in aromatic coconut. Gaining a comprehensive understanding of the sugar and fatty acid metabolites in the flesh of aromatic coconuts, along with identifying the key synthetic genes, is of significant importance for improving the development of desirable character traits in these coconuts. However, the related conjoint analysis of metabolic targets and molecular synthesis mechanisms has not been carried out in aromatic coconut until now. UPLC-MS/MS combined with RNA-Seq were performed in aromatic coconut (AC) and non-aromatic coconut (NAC) meat at 7, 9 and 11 months. The results showed that D-fructose in AC coconut meat was 3.48, 2.56 and 3.45 fold higher than that in NAC coconut meat. Similarly, D-glucose in AC coconut meat was 2.48, 2.25 and 3.91 fold higher than that in NAC coconut meat. The NAC coconut meat showed a 1.22-fold rise in the content of lauric acid compared to the AC coconut meat when it reached 11 months of age. Myristic acid content in NAC coconut meat was 1.47, 1.44 and 1.13 fold higher than that in AC coconut meat. The palmitic acid content in NAC coconut meat was 1.62 and 1.34 fold higher than that in AC coconut meat. The genes SPS, GAE, GALE, GLCAK, UGE, UGDH, FBP, GMLS, PFK, GPI, RHM, ACC, FabF, FatA, FabG, and FabI exhibited a negative correlation with D-fructose (r = -0.81) and D-glucose (r = -0.99) contents, while showing a positive correlation (r = 0.85-0.96) with lauric acid and myristic acid. Furthermore, GALE, GLCAK, FBP, GMLS, and ACC displayed a positive correlation (r = 0.83-0.94) with palmitic acid content. The sugar/organic acid ratio exhibited a positive correlation with SPS, GAE, UGE, FabF, FabZ and FabI.

19.
Heliyon ; 10(1): e23988, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38230248

RESUMEN

Alternative fuel opportunities can satisfy energy security and reduce carbon emissions. In this regard, the hydrogen fuel is derived from the source of environmental pollutants like sewage and algae wastewater through hydrothermal gasification technique using a KOH catalyst with varied gasification process parameters of duration and temperature of 6-30 min and 500-800 °C. The novelty of the work is to identify the optimum gasification process parameter for obtaining the maximum hydrogen yield using a KOH catalyst as an alternative fuel for agricultural engine applications. Influences of gasification processing time and temperature on H2 selectivity, Carbon gasification efficiency (CE), Lower heating value (LHV), Hydrogen yield potential (HYP), and gasification efficiency (GE) were studied. Its results showed that the gasifier operated at 800 °C for 30 min, offering maximum hydrogen yield (26 mol/kg) and gasification efficiency (58 %). The synthesized H2 was an alternative fuel blended with diesel fuel/TiO2 nanoparticles. It was experimentally studied using an internal combustion engine. Influences of H2 on engine performance, like brake-specific fuel consumption, brake thermal efficiency and emission performances, were measured and compared with diesel fuel. The results showed that DH20T has the least (420g/kWh) brake-specific fuel consumption (BSFC) and superior brake thermal efficiency of about 25.2 %. The emission results revealed that the DH20T blend showed the NOX value increased by almost 10.97 % compared to diesel fuel, whereas the CO, UHC, and smoke values reduced by roughly 31.25, 28.34, and 42.35 %. The optimum fuel blend (DH20T) result is recommended for agricultural engine applications.

20.
Sci Rep ; 13(1): 14728, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679372

RESUMEN

This work presents the simple synthesis of a green and novel Palladium based magnetic nanocatalyst with effective catalytic properties and reusability. These heterogeneous catalysts were prepared by the anchoring of Pd(0) on the surface of ZrFe2O4 MNPs coated with a di-substituted adenine (Ade) compound as a green linker. The as-synthesized ZrFe2O4@SiO2@Ade-Pd MNPs were methodically characterized over different physicochemical measures like VSM, EDX, Map, SEM, TEM, ICP, and FT-IR analysis. The catalytic activity of ZrFe2O4@SiO2@Ade-Pd was carefully examined for the room-temperature Carbon-Carbon coupling reaction in acetonitrile as a solvent. It is worth noting that the synthesized solid catalyst can be easily recovered with a bar magnet and reused for five cycles without decrease of catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA