Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Pers Ubiquitous Comput ; 27(3): 733-750, 2023.
Article En | MEDLINE | ID: mdl-33456433

The novel human coronavirus disease COVID-19 has become the fifth documented pandemic since the 1918 flu pandemic. COVID-19 was first reported in Wuhan, China, and subsequently spread worldwide. Almost all of the countries of the world are facing this natural challenge. We present forecasting models to estimate and predict COVID-19 outbreak in Asia Pacific countries, particularly Pakistan, Afghanistan, India, and Bangladesh. We have utilized the latest deep learning techniques such as Long Short Term Memory networks (LSTM), Recurrent Neural Network (RNN), and Gated Recurrent Units (GRU) to quantify the intensity of pandemic for the near future. We consider the time variable and data non-linearity when employing neural networks. Each model's salient features have been evaluated to foresee the number of COVID-19 cases in the next 10 days. The forecasting performance of employed deep learning models shown up to July 01, 2020, is more than 90% accurate, which shows the reliability of the proposed study. We hope that the present comparative analysis will provide an accurate picture of pandemic spread to the government officials so that they can take appropriate mitigation measures.

2.
Sensors (Basel) ; 22(19)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36236325

Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction model, various feature combinations and well-known classification algorithms were used. We achieved 95% accuracy with gradient boosted trees and multilayer perceptron in the heart disease prediction model. The Random Forest gives a better performance level in heart disease prediction, with an accuracy level of 96%.


Coronary Disease , Heart Diseases , Algorithms , Coronary Disease/diagnosis , Humans , Machine Learning , Neural Networks, Computer , Support Vector Machine
3.
Comput Intell Neurosci ; 2022: 3145956, 2022.
Article En | MEDLINE | ID: mdl-36238674

Effective software cost estimation significantly contributes to decision-making. The rising trend of using nature-inspired meta-heuristic algorithms has been seen in software cost estimation problems. The constructive cost model (COCOMO) method is a well-known regression-based algorithmic technique for estimating software costs. The limitation of the COCOMO models is that the values of these coefficients are constant for similar kinds of projects whereas, in reality, these parameters vary from one organization to another organization. Therefore, for accurate estimation, it is necessary to fine-tune the coefficients. The research community is now examining deep learning (DL) as a forward-looking solution to improve cost estimation. Although deep learning architectures provide some improvements over existing flat technologies, they also have some shortcomings, such as large training delays, over-fitting, and under-fitting. Deep learning models usually require fine-tuning to a large number of parameters. The meta-heuristic algorithm supports finding a good optimal solution at a reasonable computational cost. Additionally, heuristic approaches allow for the location of an optimum solution. So, it can be used with deep neural networks to minimize training delays. The hybrid of ant colony optimization with BAT (HACO-BA) algorithm is a hybrid optimization technique that combines the most common global optimum search technique for ant colonies (ACO) in association with one of the newest search techniques called the BAT algorithm (BA). This technology supports the solution of multivariable problems and has been applied to the optimization of a large number of engineering problems. This work will perform a two-fold assessment of algorithms: (i) comparing the efficacy of ACO, BA, and HACO-BA in optimizing COCOMO II coefficients; and (ii) using HACO-BA algorithms to optimize and improve the deep learning training process. The experimental results show that the hybrid HACO-BA performs better as compared to ACO and BA for tuning COCOMO II. HACO-BA also performs better in the optimization of DNN in terms of execution time and accuracy. The process is executed upto 100 epochs, and the accuracy achieved by the proposed DNN approach is almost 98% while NN achieved accuracy of up to 85% on the same datasets.


Deep Learning , Heuristics , Algorithms , Neural Networks, Computer , Software
4.
Front Med (Lausanne) ; 8: 714811, 2021.
Article En | MEDLINE | ID: mdl-34869413

Respiratory sound (RS) attributes and their analyses structure a fundamental piece of pneumonic pathology, and it gives symptomatic data regarding a patient's lung. A couple of decades back, doctors depended on their hearing to distinguish symptomatic signs in lung audios by utilizing the typical stethoscope, which is usually considered a cheap and secure method for examining the patients. Lung disease is the third most ordinary cause of death worldwide, so; it is essential to classify the RS abnormality accurately to overcome the death rate. In this research, we have applied Fourier analysis for the visual inspection of abnormal respiratory sounds. Spectrum analysis was done through Artificial Noise Addition (ANA) in conjunction with different deep convolutional neural networks (CNN) to classify the seven abnormal respiratory sounds-both continuous (CAS) and discontinuous (DAS). The proposed framework contains an adaptive mechanism of adding a similar type of noise to unhealthy respiratory sounds. ANA makes sound features enough reach to be identified more accurately than the respiratory sounds without ANA. The obtained results using the proposed framework are superior to previous techniques since we simultaneously considered the seven different abnormal respiratory sound classes.

5.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Article En | MEDLINE | ID: mdl-34359295

Breast cancer is becoming more dangerous by the day. The death rate in developing countries is rapidly increasing. As a result, early detection of breast cancer is critical, leading to a lower death rate. Several researchers have worked on breast cancer segmentation and classification using various imaging modalities. The ultrasonic imaging modality is one of the most cost-effective imaging techniques, with a higher sensitivity for diagnosis. The proposed study segments ultrasonic breast lesion images using a Dilated Semantic Segmentation Network (Di-CNN) combined with a morphological erosion operation. For feature extraction, we used the deep neural network DenseNet201 with transfer learning. We propose a 24-layer CNN that uses transfer learning-based feature extraction to further validate and ensure the enriched features with target intensity. To classify the nodules, the feature vectors obtained from DenseNet201 and the 24-layer CNN were fused using parallel fusion. The proposed methods were evaluated using a 10-fold cross-validation on various vector combinations. The accuracy of CNN-activated feature vectors and DenseNet201-activated feature vectors combined with the Support Vector Machine (SVM) classifier was 90.11 percent and 98.45 percent, respectively. With 98.9 percent accuracy, the fused version of the feature vector with SVM outperformed other algorithms. When compared to recent algorithms, the proposed algorithm achieves a better breast cancer diagnosis rate.

...