Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954820

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (A1ATD) is a life-threatening condition caused by the inheritance of the serpin family A member 1 "Z" genetic variant driving alpha-1 antitrypsin (AAT) protein misfolding in hepatocytes. There are no approved medicines for this disease. METHODS: We conducted a high-throughput image-based small molecule screen using patient-derived induced pluripotent stem cell-hepatocytes (iPSC-hepatocytes). Identified targets were validated in vitro using 3 independent patient iPSC lines. The effects of the identified target, leucine-rich repeat kinase 2 (LRRK2), were further evaluated in an animal model of A1ATD through histology and immunohistochemistry and in an autophagy-reporter line. Autophagy induction was assessed through immunoblot and immunofluorescence analyses. RESULTS: Small-molecule screen performed in iPSC-hepatocytes identified LRRK2 as a potentially new therapeutic target. Of the commercially available LRRK2 inhibitors tested, we identified CZC-25146, a candidate with favorable pharmacokinetic properties, as capable of reducing polymer load, increasing normal AAT secretion, and reducing inflammatory cytokines in both cells and PiZ mice. Mechanistically, this effect was achieved through the induction of autophagy. CONCLUSIONS: Our findings support the use of CZC-25146 and leucine-rich repeat kinase-2 inhibitors in hepatic proteinopathy research and their further investigation as novel therapeutic candidates for A1ATD.

2.
FEBS J ; 291(13): 2937-2954, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523412

RESUMEN

Mutants of alpha-1-antitrypsin cause the protein to self-associate and form ordered aggregates ('polymers') that are retained within hepatocytes, resulting in a predisposition to the development of liver disease. The associated reduction in secretion, and for some mutants, impairment of function, leads to a failure to protect lung tissue against proteases released during the inflammatory response and an increased risk of emphysema. We report here a novel deficiency mutation (Gly192Cys), that we name the Sydney variant, identified in a patient in heterozygosity with the Z allele (Glu342Lys). Cellular analysis revealed that the novel variant was mostly retained as insoluble polymers within the endoplasmic reticulum. The basis for this behaviour was investigated using biophysical and structural techniques. The variant showed a 40% reduction in inhibitory activity and a reduced stability as assessed by thermal unfolding experiments. Polymerisation involves adoption of an aggregation-prone intermediate and paradoxically the energy barrier for transition to this state was increased by 16% for the Gly192Cys variant with respect to the wild-type protein. However, with activation to the intermediate state, polymerisation occurred at a 3.8-fold faster rate overall. X-ray crystallography provided two crystal structures of the Gly192Cys variant, revealing perturbation within the 'breach' region with Cys192 in two different orientations: in one structure it faces towards the hydrophobic core while in the second it is solvent-exposed. This orientational heterogeneity was confirmed by PEGylation. These data show the critical role of the torsional freedom imparted by Gly192 in inhibitory activity and stability against polymerisation.


Asunto(s)
alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo , Cristalografía por Rayos X , Mutación , Modelos Moleculares , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Conformación Proteica , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética
3.
Cell Mol Life Sci ; 81(1): 6, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087060

RESUMEN

Lung disease in alpha-1-antitrypsin deficiency (AATD) mainly results from insufficient control of the serine proteases neutrophil elastase (NE) and proteinase-3 due to reduced plasma levels of alpha-1-antitrypsin (AAT) variants. Mutations in the specificity-determining reactive center loop (RCL) of AAT would be predicted to minimally affect protein folding and secretion by hepatocytes but can impair anti-protease activity or alter the target protease. These properly secreted but dysfunctional 'type-2' variants would not be identified by common diagnostic protocols that are predicated on a reduction in circulating AAT. This has potential clinical relevance: in addition to the dysfunctional Pittsburgh and Iners variants reported previously, several uncharacterized RCL variants are present in genome variation databases. To prospectively evaluate the impact of RCL variations on secretion and anti-protease activity, here we performed a systematic screening of amino acid substitutions occurring at the AAT-NE interface. Twenty-three AAT variants that can result from single nucleotide polymorphisms in this region, including 11 present in sequence variation databases, were expressed in a mammalian cell model. All demonstrated unaltered protein folding and secretion. However, when their ability to form stable complexes with NE was evaluated by western blot, enzymatic assays, and a novel ELISA developed to quantify AAT-NE complexes, substrate-like and NE-binding deficient dysfunctional variants were identified. This emphasizes the ability of the RCL to accommodate inactivating substitutions without impacting the integrity of the native molecule and demonstrates that this class of molecule violates a generally accepted paradigm that equates circulating levels with functional protection of lung tissue.


Asunto(s)
Enfermedades Pulmonares , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/genética , Mutación/genética , Pulmón , Sustitución de Aminoácidos
4.
EMBO Mol Med ; 15(6): e17144, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158379

RESUMEN

In the practice of medicine, many fundamental biological pathways that require tight on/off control, such as inflammation and circulatory homeostasis, are regulated by serine proteinases, but we rarely consider the unique protease inhibitors that, in turn, regulate these proteases. The serpins are a family of proteins with a shared tertiary structure, whose members largely act as serine protease inhibitors, found in all forms of life, ranging from viruses, bacteria, and archaea to plants and animals. These proteins represent up to 2-10% of proteins in the human blood and are the third most common protein family.


Asunto(s)
Serpinas , Animales , Humanos , Serpinas/genética , Serpinas/química , Serpinas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Serina Proteasas/metabolismo , Inflamación
5.
Am J Respir Cell Mol Biol ; 69(3): 355-366, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37071847

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed disorder associated with mutations in the SERPINA1 gene encoding alpha-1 antitrypsin (AAT). Severe AATD can manifest as pulmonary emphysema and progressive liver disease. Besides the most common pathogenic variants S (E264V) and Z (E342K), many rarer genetic variants of AAT have been found in patients and in the general population. Here we report a panel of new SERPINA1 variants, including 4 null and 16 missense alleles, identified among a cohort of individuals with suspected AATD whose phenotypic follow-up showed inconclusive or atypical results. Because the pathogenic significance of the missense variants was unclear purely on the basis of clinical data, the integration of computational, biochemical, and cellular studies was used to define the associated risk of disease. Established pathogenicity predictors and structural analysis identified a panel of candidate damaging mutations that were characterized by expression in mammalian cell models. Polymer formation, intracellular accumulation, and secretory efficiency were evaluated experimentally. Our results identified two AAT mutants with a Z-like polymerogenic severe deficiency profile (Smilano and Mcampolongo) and three milder variants (Xsarezzo, Pdublin, and Ctiberias). Overall, the experimentally determined behavior of the variants was in agreement with the pathogenicity scores of the REVEL (an ensemble method for predicting the pathogenicity of rare missense variants) predictor, supporting the utility of this bioinformatic tool in the initial assessment of newly identified amino acid substitutions of AAT. Our study, in addition to describing 20 new SERPINA1 variants, provides a model for a multidisciplinary approach to classification of rare AAT variants and their clinical impact on individuals with rare AATD genotypes.


Asunto(s)
Enfisema Pulmonar , Deficiencia de alfa 1-Antitripsina , Humanos , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/genética , Genotipo , Mutación/genética , Mutación Missense/genética
6.
Chem Sci ; 13(39): 11533-11539, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36320392

RESUMEN

Disulfide bridging, also known as disulfide stapling, is a powerful strategy for the construction of site-selective protein bioconjugates. Here we describe the first examples of a new class of such reagents, containing a 'stable-labile' design. These dual-reactive reagents are designed to form a stable bond to one cysteine and a labile bond to the second; resulting in a robust attachment to the protein with one end of the bridge, whilst the other end serves as a reactive handle for subsequent bioconjugation. By incorporating thioesters into these bridges, we demonstrate that they are primed for native chemical ligation (NCL) with N-terminal cysteines; offering an alternative to the requirement for C-terminal thioesters for use in such ligations. Alternatively, the use of hydrazine as the ligating nucleophile enables a separate cargo to be attached to each cysteine residue, which are exploited to insert variably cleavable linkers. These methodologies are demonstrated on an antibody fragment, and serve to expand the scope of disulfide bridging strategies whilst offering a convenient route to the construction of multifunctional antibody fragment conjugates.

7.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36045259

RESUMEN

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Degradación Asociada con el Retículo Endoplásmico , Queratina-8/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células HeLa , Humanos , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Materials (Basel) ; 14(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063488

RESUMEN

α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.

9.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073489

RESUMEN

Alpha-1-antitrypsin (AAT) deficiency causes pulmonary disease due to decreased levels of circulating AAT and consequently unbalanced protease activity in the lungs. Deposition of specific AAT variants, such as the common Z AAT, within hepatocytes may also result in liver disease. These deposits are comprised of ordered polymers of AAT formed by an inter-molecular domain swap. The discovery and characterization of rare variants of AAT and other serpins have historically played a crucial role in the dissection of the structural mechanisms leading to AAT polymer formation. Here, we report a severely deficient shutter region variant, Bologna AAT (N186Y), which was identified in five unrelated subjects with different geographical origins. We characterized the new variant by expression in cellular models in comparison with known polymerogenic AAT variants. Bologna AAT showed secretion deficiency and intracellular accumulation as detergent-insoluble polymers. Extracellular polymers were detected in both the culture media of cells expressing Bologna AAT and in the plasma of a patient homozygous for this variant. Structural modelling revealed that the mutation disrupts the hydrogen bonding network in the AAT shutter region. These data support a crucial coordinating role for asparagine 186 and the importance of this network in promoting formation of the native structure.


Asunto(s)
Mutación Missense , Deficiencia de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina , Sustitución de Aminoácidos , Células HEK293 , Humanos , Dominios Proteicos , alfa 1-Antitripsina/biosíntesis , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/patología
10.
Bioorg Med Chem Lett ; 41: 127973, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753261

RESUMEN

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.


Asunto(s)
Diseño de Fármacos , Pliegue de Proteína , alfa 1-Antitripsina/metabolismo , Cristalización , Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Retículo Endoplásmico/metabolismo , Biblioteca de Genes , Hepatocitos/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , alfa 1-Antitripsina/genética
11.
Dev Cell ; 56(6): 747-760.e6, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33667344

RESUMEN

Loss of insulin-secreting pancreatic ß cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains ß cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce ß cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. ß cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by ß cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of ß cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents ß cell death and metabolic abnormalities. These data uncover a pathway for ß cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.


Asunto(s)
Apoptosis , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , Proteínas del Tejido Nervioso/metabolismo , alfa 1-Antitripsina/química , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Citoplasma/metabolismo , Proteínas del Citoesqueleto/genética , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/fisiología , Proteínas del Tejido Nervioso/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
12.
EMBO Mol Med ; 13(3): e13167, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33512066

RESUMEN

Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Animales , Retículo Endoplásmico , Hepatocitos , Ratones , alfa 1-Antitripsina/genética
13.
FEBS J ; 288(7): 2222-2237, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33058391

RESUMEN

The formation of ordered Z (Glu342Lys) α1 -antitrypsin polymers in hepatocytes is central to liver disease in α1 -antitrypsin deficiency. In vitro experiments have identified an intermediate conformational state (M*) that precedes polymer formation, but this has yet to be identified in vivo. Moreover, the mechanism of polymer formation and their fate in cells have been incompletely characterised. We have used cell models of disease in conjunction with conformation-selective monoclonal antibodies and a small molecule inhibitor of polymerisation to define the dynamics of polymer formation, accumulation and secretion. Pulse-chase experiments demonstrate that Z α1 -antitrypsin accumulates as short-chain polymers that partition with soluble cellular components and are partially secreted by cells. These precede the formation of larger, insoluble polymers with a longer half-life (10.9 ± 1.7 h and 20.9 ± 7.4 h for soluble and insoluble polymers, respectively). The M* intermediate (or a by-product thereof) was identified in the cells by a conformation-specific monoclonal antibody. This was completely abrogated by treatment with the small molecule, which also blocked the formation of intracellular polymers. These data allow us to conclude that the M* conformation is central to polymerisation of Z α1 -antitrypsin in vivo; preventing its accumulation represents a tractable approach for pharmacological treatment of this condition; polymers are partially secreted; and polymers exist as two distinct populations in cells whose different dynamics have likely consequences for the aetiology of the disease.


Asunto(s)
Chaperonas Moleculares/genética , Conformación Proteica/efectos de los fármacos , Deficiencia de alfa 1-Antitripsina/tratamiento farmacológico , alfa 1-Antitripsina/genética , Anticuerpos Monoclonales/farmacología , Hepatocitos/efectos de los fármacos , Humanos , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestructura , Polímeros/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , alfa 1-Antitripsina/química , alfa 1-Antitripsina/efectos de los fármacos , alfa 1-Antitripsina/ultraestructura , Deficiencia de alfa 1-Antitripsina/genética
14.
Nat Commun ; 11(1): 6371, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311470

RESUMEN

Genetic mutations predispose the serine protease inhibitor α1-antitrypsin to misfolding and polymerisation within hepatocytes, causing liver disease and chronic obstructive pulmonary disease. This misfolding occurs via a transiently populated intermediate state, but our structural understanding of this process is limited by the instability of recombinant α1-antitrypsin variants in solution. Here we apply NMR spectroscopy to patient-derived samples of α1-antitrypsin at natural isotopic abundance to investigate the consequences of disease-causing mutations, and observe widespread chemical shift perturbations for methyl groups in Z AAT (E342K). By comparison with perturbations induced by binding of a small-molecule inhibitor of misfolding we conclude that they arise from rapid exchange between the native conformation and a well-populated intermediate state. The observation that this intermediate is stabilised by inhibitor binding suggests a paradoxical approach to the targeted treatment of protein misfolding disorders, wherein the stabilisation of disease-associated states provides selectivity while inhibiting further transitions along misfolding pathways.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Predisposición Genética a la Enfermedad/genética , Glicoproteínas , Humanos , Modelos Moleculares , Medicina Molecular , Mutación , Agregación Patológica de Proteínas , Conformación Proteica , Proteínas Recombinantes , Inhibidores de Serina Proteinasa/química
15.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087346

RESUMEN

The serpinopathies are among a diverse set of conformational diseases that involve the aberrant self-association of proteins into ordered aggregates. α1-Antitrypsin deficiency is the archetypal serpinopathy and results from the formation and deposition of mutant forms of α1-antitrypsin as "polymer" chains in liver tissue. No detailed structural analysis has been performed of this material. Moreover, there is little information on the relevance of well-studied artificially induced polymers to these disease-associated molecules. We have isolated polymers from the liver tissue of Z α1-antitrypsin homozygotes (E342K) who have undergone transplantation, labeled them using a Fab fragment, and performed single-particle analysis of negative-stain electron micrographs. The data show structural equivalence between heat-induced and ex vivo polymers and that the intersubunit linkage is best explained by a carboxyl-terminal domain swap between molecules of α1-antitrypsin.

16.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32699193

RESUMEN

The α-1-antitrypsin (or alpha-1-antitrypsin, A1AT) Z variant is the primary cause of severe A1AT deficiency and forms polymeric chains that aggregate in the endoplasmic reticulum of hepatocytes. Around 2%-5% of Europeans are heterozygous for the Z and WT M allele, and there is evidence of increased risk of liver disease when compared with MM A1AT individuals. We have shown that Z and M A1AT can copolymerize in cell models, but there has been no direct observation of heteropolymer formation in vivo. To this end, we developed a monoclonal antibody (mAb2H2) that specifically binds to M in preference to Z A1AT, localized its epitope using crystallography to a region perturbed by the Z (Glu342Lys) substitution, and used Fab fragments to label polymers isolated from an MZ heterozygote liver explant. Glu342 is critical to the affinity of mAb2H2, since it also recognized the mild S-deficiency variant (Glu264Val) present in circulating polymers from SZ heterozygotes. Negative-stain electron microscopy of the Fab2H2-labeled liver polymers revealed that M comprises around 6% of the polymer subunits in the MZ liver sample. These data demonstrate that Z A1AT can form heteropolymers with polymerization-inert variants in vivo with implications for liver disease in heterozygous individuals.


Asunto(s)
Cirrosis Hepática/genética , Agregado de Proteínas/genética , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Alelos , Dominio Catalítico/efectos de los fármacos , Cristalografía , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Epítopos/genética , Epítopos/inmunología , Variación Genética/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Agregado de Proteínas/inmunología , Conformación Proteica , alfa 1-Antitripsina/química , alfa 1-Antitripsina/ultraestructura , Deficiencia de alfa 1-Antitripsina/inmunología , Deficiencia de alfa 1-Antitripsina/patología
17.
Metallomics ; 11(5): 914-924, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30848261

RESUMEN

Lanthanides are rare-earth metals with a broad range of applications in biological research and medicine. In addition to their unique magnetic and spectroscopic properties, lanthanides are also effective mimics of calcium and can stimulate or inhibit the function of calcium-binding proteins. Cadherins are a large family of calcium-binding proteins that facilitate cell adhesion and play key roles in embryo development, tissue homeostasis and tumour metastasis. However, whether lanthanides can bind cadherins and functionally replace calcium binding has not been comprehensively explored. In this study, we investigated the effect of lanthanide binding on cadherin structure and function using terbium, which is a commonly used lanthanide for protein spectroscopy and a proposed anti-cancer agent. We demonstrate that terbium can compete with calcium for binding to calcium-binding sites in cadherins. Terbium binding to cadherins abolished their cell adhesive activity and rendered cadherins sensitive to proteolysis by trypsin. Molecular dynamics simulations indicate that replacement of calcium by terbium results in structural rearrangements and increases the flexibility of the cadherin ectodomain. These changes in structure and dynamics are likely to underlie the inability of lanthanide-bound cadherins to support cell adhesion. Taken together, our findings further knowledge on lanthanide interactions with calcium-binding proteins and provide new insight into the influence of metal chemistry on cadherin structure, dynamics and function.


Asunto(s)
Cadherinas/metabolismo , Calcio/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Animales , Células CHO , Cadherinas/química , Adhesión Celular , Agregación Celular , Cricetulus , Humanos , Iones , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Terbio/metabolismo , Tripsina/metabolismo
18.
PLoS One ; 14(1): e0206955, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30633749

RESUMEN

Lung disease in alpha-1-antitrypsin deficiency (AATD) results from dysregulated proteolytic activity, mainly by neutrophil elastase (HNE), in the lung parenchyma. This is the result of a substantial reduction of circulating alpha-1-antitrypsin (AAT) and the presence in the plasma of inactive polymers of AAT. Moreover, some AAT mutants have reduced intrinsic activity toward HNE, as demonstrated for the common Z mutant, as well as for other rarer variants. Here we report the identification and characterisation of the novel AAT reactive centre loop variant Gly349Arg (p.G373R) present in the ExAC database. This AAT variant is secreted at normal levels in cellular models of AATD but shows a severe reduction in anti-HNE activity. Biochemical and molecular dynamics studies suggest it exhibits unfavourable RCL presentation to cognate proteases and compromised insertion of the RCL into ß-sheet A. Identification of a fully dysfunctional AAT mutant that does not show a secretory defect underlines the importance of accurate genotyping of patients with pulmonary AATD manifestations regardless of the presence of normal levels of AAT in the circulation. This subtype of disease is reminiscent of dysfunctional phenotypes in anti-thrombin and C1-inibitor deficiencies so, accordingly, we classify this variant as the first pure functionally-deficient (type II) AATD mutant.


Asunto(s)
Variación Genética , Genética de Población , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Biológicos , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , alfa 1-Antitripsina/química
19.
Methods Mol Biol ; 1826: 87-107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30194595

RESUMEN

Serpin polymerization is the result of end-to-end ordered aggregation of serpin monomers into linear unbranched chains. This change in molecular state represents the basis of several conformational diseases with pathological gain-of-function and loss-of-function phenotypes, termed serpinopathies. Tools that enable quantification and characterization of polymer formation are therefore important to the study of serpin behavior in this pathophysiological context. Such methods rely on different manifestations of molecular change: polymerization-the generation of molecules with increasing molecular weight-is accompanied by concomitant structural rearrangements in the constituent subunits. Different approaches may be appropriate dependent on whether measurements are made on static samples, such as tissue or cell culture extracts, or in time-resolved experiments, often undertaken using polymers artificially induced under in vitro destabilizing conditions. In the former category, we describe the application of polyacrylamide electrophoresis, Western blot, ELISA, and negative-stain electron microscopy and in the latter category, Förster resonance energy transfer and fluorescence spectroscopy using environment-sensitive probes.


Asunto(s)
Complejos Multiproteicos/química , Multimerización de Proteína , Serpinas/química , Animales , Western Blotting/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Microscopía Electrónica/métodos , Complejos Multiproteicos/metabolismo , Serpinas/metabolismo
20.
Sci Rep ; 8(1): 2121, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391487

RESUMEN

Conserpin is an engineered protein that represents the consensus of a sequence alignment of eukaryotic serpins: protease inhibitors typified by a metastable native state and a structurally well-conserved scaffold. Previously, this protein has been found to adopt a native inhibitory conformation, possess an atypical reversible folding pathway and exhibit pronounced resistance to inactivation. Here we have designed a version of conserpin, cAT, with the inhibitory specificity of α1-antitrypsin, and generated single-tryptophan variants to probe its folding pathway in more detail. cAT exhibited similar thermal stability to the parental protein, an inactivation associated with oligomerisation rather a transition to the latent conformation, and a native state with pronounced kinetic stability. The tryptophan variants reveal the unfolding intermediate ensemble to consist of an intact helix H, a distorted helix F and 'breach' region structurally similar to that of a mesophilic serpin intermediate. A combination of intrinsic fluorescence, circular dichroism, and analytical gel filtration provide insight into a highly cooperative folding pathway with concerted changes in secondary and tertiary structure, which minimises the accumulation of two directly-observed aggregation-prone intermediate species. This functional conserpin variant represents a basis for further studies of the relationship between structure and stability in the serpin superfamily.


Asunto(s)
Mutación , Pliegue de Proteína , Triptófano/química , alfa 1-Antitripsina/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Triptófano/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA