Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857534

RESUMEN

Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.

2.
Nat Biomed Eng ; 7(7): 867-886, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37106151

RESUMEN

Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.


Asunto(s)
Alginatos , Hidrogeles , Ratones , Animales , Alginatos/química , Hidrogeles/química , Células Endoteliales , Primates , Materiales Biocompatibles/química
3.
Sci Adv ; 8(9): eabm1032, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235346

RESUMEN

Proinflammatory cytokines have been approved by the Food and Drug Administration for the treatment of metastatic melanoma and renal carcinoma. However, effective cytokine therapy requires high-dose infusions that can result in antidrug antibodies and/or systemic side effects that limit long-term benefits. To overcome these limitations, we developed a clinically translatable cytokine delivery platform composed of polymer-encapsulated human ARPE-19 (RPE) cells that produce natural cytokines. Tumor-adjacent administration of these capsules demonstrated predictable dose modulation with spatial and temporal control and enabled peritoneal cancer immunotherapy without systemic toxicities. Interleukin-2 (IL2)-producing cytokine factory treatment eradicated peritoneal tumors in ovarian and colorectal mouse models. Furthermore, computational pharmacokinetic modeling predicts clinical translatability to humans. Notably, this platform elicited T cell responses in NHPs, consistent with reported biomarkers of treatment efficacy without toxicity. Combined, our findings demonstrate the safety and efficacy of IL2 cytokine factories in preclinical animal models and provide rationale for future clinical testing in humans.


Asunto(s)
Interleucina-2 , Melanoma , Animales , Citocinas , Inmunoterapia , Interleucina-2/farmacología , Melanoma/tratamiento farmacológico , Ratones , Estados Unidos
4.
Sci Rep ; 8(1): 1637, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374272

RESUMEN

A next-generation cure for type 1 diabetes relies on immunoprotection of insulin-producing cells, which can be achieved by their encapsulation in microspheres made of non-covalently crosslinked hydrogels. Treatment success is directly related to the microsphere structure that is characterized by the localization of the polymers constituting the hydrogel material. However, due to the lack of a suitable analytical method, it is presently unknown how the microsphere structure changes in vivo, which complicates evaluation of different encapsulation approaches. Here, confocal Raman microscopy (CRM) imaging was tailored to serve as a powerful new tool for tracking structural changes in two major encapsulation designs, alginate-based microbeads and multi-component microcapsules. CRM analyses before implantation and after explantation from a mouse model revealed complete loss of the original heterogeneous structure in the alginate microbeads, making the intentionally high initial heterogeneity a questionable design choice. On the other hand, the structural heterogeneity was conserved in the microcapsules, which indicates that this design will better retain its immunoprotective properties in vivo. In another application, CRM was used for quantitative mapping of the alginate concentration throughout the microbead volume. Such data provide invaluable information about the microenvironment cells would encounter upon their encapsulation in alginate microbeads.

5.
Nat Biomed Eng ; 2(11): 810-821, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30873298

RESUMEN

The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials. Although one month post-implantation all formulations elicited significant FBR and PFO, three chemically modified, immune-modulating alginate formulations elicited reduced FBR. In conjunction with a minimally invasive transplantation technique into the bursa omentalis of NHPs, the most promising chemically modified alginate derivative (Z1-Y15) protected viable and glucose-responsive allogeneic islets for 4 months without the need for immunosuppression. Chemically modified alginate formulations may enable the long-term transplantation of islets for the correction of insulin deficiency.

6.
Nat Biomed Eng ; 2(12): 894-906, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30931173

RESUMEN

Continuous glucose monitors (CGMs), used by patients with diabetes mellitus, can autonomously track fluctuations in blood glucose over time. However, the signal produced by CGMs during the initial recording period following sensor implantation contains substantial noise, requiring frequent recalibration via fingerprick tests. Here, we show that coating the sensor with a zwitterionic polymer, found via a combinatorial-chemistry approach, significantly reduces signal noise and improves CGM performance. We evaluated the polymer-coated sensors in mice as well as in healthy and diabetic non-human primates, and show that the sensors accurately record glucose levels without the need for recalibration. We also show that the polymer-coated sensors significantly abrogated immune responses to the sensor, as indicated by histology, fluorescent whole-body imaging of inflammation-associated protease activity, and gene expression of inflammation markers. The polymer coating may allow CGMs to become standalone measuring devices.


Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Materiales Biocompatibles Revestidos/química , Polímeros/química , Animales , Técnicas Biosensibles/instrumentación , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Técnicas Electroquímicas , Electrodos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Relación Señal-Ruido , Piel/patología , Transcriptoma
7.
Curr Diab Rep ; 17(7): 47, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28523592

RESUMEN

PURPOSE OF REVIEW: Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic ß cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. RECENT FINDINGS: Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Composición de Medicamentos , Islotes Pancreáticos/fisiología , Animales , Ensayos Clínicos como Asunto , Humanos , Trasplante de Islotes Pancreáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...