Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
J Med Chem ; 67(6): 4707-4725, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38498998

Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG.


Amines , Ethers , Humans
2.
Cancer Res ; 84(7): 1084-1100, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38266099

Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE: In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.


Leukemia, Myeloid, Acute , Oxidative Phosphorylation , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Apoptosis
3.
ACS Med Chem Lett ; 14(2): 199-210, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36793435

B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein-protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.

5.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Article En | MEDLINE | ID: mdl-34662547

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Coatomer Protein/genetics , Coatomer Protein/metabolism , Drug Discovery , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Neoplastic/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Drug Discovery/methods , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects
6.
Oncoimmunology ; 10(1): 1943234, 2021.
Article En | MEDLINE | ID: mdl-34589290

TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.


Leukemia, Lymphocytic, Chronic, B-Cell , Naphthyridines/therapeutic use , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction , TNF Receptor-Associated Factor 1/genetics
7.
J Med Chem ; 64(15): 11129-11147, 2021 08 12.
Article En | MEDLINE | ID: mdl-34291633

Both previous and additional genetic knockdown studies reported herein implicate G protein-coupled receptor kinase 6 (GRK6) as a critical kinase required for the survival of multiple myeloma (MM) cells. Therefore, we sought to develop a small molecule GRK6 inhibitor as an MM therapeutic. From a focused library of known kinase inhibitors, we identified two hits with moderate biochemical potencies against GRK6. From these hits, we developed potent (IC50 < 10 nM) analogues with selectivity against off-target kinases. Further optimization led to the discovery of an analogue (18) with an IC50 value of 6 nM against GRK6 and selectivity against a panel of 85 kinases. Compound 18 has potent cellular target engagement and antiproliferative activity against MM cells and is synergistic with bortezomib. In summary, we demonstrate that targeting GRK6 with small molecule inhibitors represents a promising approach for MM and identify 18 as a novel, potent, and selective GRK6 inhibitor.


Antineoplastic Agents/pharmacology , Drug Design , G-Protein-Coupled Receptor Kinases/antagonists & inhibitors , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , G-Protein-Coupled Receptor Kinases/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
8.
ACS Med Chem Lett ; 12(5): 846-850, 2021 May 13.
Article En | MEDLINE | ID: mdl-34055235

Mutations in the gene encoding activin receptor-like kinase 2 (ALK2) are implicated in the pathophysiology of a pediatric brainstem cancer, diffuse intrinsic pontine glioma (DIPG). Inhibitors of ALK2 that cross the blood-brain barrier have been proposed as a method of treatment for DIPG. As part of an open science approach to radiopharmaceutical and drug discovery, we developed 11C-labeled radiotracers from potent and selective lead ALK2 inhibitors to investigate their brain permeability through positron emission tomography (PET) neuroimaging. Four radiotracers were synthesized by 11C-methylation and assessed by dynamic PET imaging in healthy Sprague-Dawley rats. One of the compounds, [ 11 C]M4K2127, showed high initial brain uptake (SUV ∼ 2), including in the region of interest (pons). This data supports the use of this chemotype as a brain penetrant ALK2 inhibitor that permeates evenly into the pons with potential application for the treatment of DIPG.

9.
J Med Chem ; 63(17): 10061-10085, 2020 09 10.
Article En | MEDLINE | ID: mdl-32787083

There are currently no effective chemotherapeutic drugs approved for the treatment of diffuse intrinsic pontine glioma (DIPG), an aggressive pediatric cancer resident in the pons region of the brainstem. Radiation therapy is beneficial but not curative, with the condition being uniformly fatal. Analysis of the genomic landscape surrounding DIPG has revealed that activin receptor-like kinase-2 (ALK2) constitutes a potential target for therapeutic intervention given its dysregulation in the disease. We adopted an open science approach to develop a series of potent, selective, orally bioavailable, and brain-penetrant ALK2 inhibitors based on the lead compound LDN-214117. Modest structural changes to the C-3, C-4, and C-5 position substituents of the core pyridine ring afforded compounds M4K2009, M4K2117, and M4K2163, each with a superior potency, selectivity, and/or blood-brain barrier (BBB) penetration profile. Robust in vivo pharmacokinetic (PK) properties and tolerability mark these inhibitors as advanced preclinical compounds suitable for further development and evaluation in orthotopic models of DIPG.


Activin Receptors, Type I/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Diffuse Intrinsic Pontine Glioma/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Female , HEK293 Cells , Humans , Male , Mice, SCID , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
10.
BMC Cancer ; 20(1): 724, 2020 Aug 05.
Article En | MEDLINE | ID: mdl-32758183

BACKGROUND: Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gαi/o protein coupled receptor (GPCR). METHODS: We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. RESULTS: We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gαi/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. CONCLUSIONS: Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the on-target activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.


Biphenyl Compounds/pharmacology , Breast Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Animals , Antineoplastic Agents/pharmacology , Biphenyl Compounds/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Gene Knockout Techniques , Guanidines/chemistry , Guanidines/metabolism , Guanidines/pharmacology , Heterografts , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Isoquinolines/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Proteomics , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Serotonin/genetics , Serotonin Antagonists/chemistry , Serotonin Antagonists/metabolism
11.
J Med Chem ; 63(9): 4978-4996, 2020 05 14.
Article En | MEDLINE | ID: mdl-32369358

Diffuse intrinsic pontine glioma is an aggressive pediatric cancer for which no effective chemotherapeutic drugs exist. Analysis of the genomic landscape of this disease has led to the identification of the serine/threonine kinase ALK2 as a potential target for therapeutic intervention. In this work, we adopted an open science approach to develop a series of potent type I inhibitors of ALK2 which are orally bio-available and brain-penetrant. Initial efforts resulted in the discovery of M4K2009, an analogue of the previously reported ALK2 inhibitor LDN-214117. Although highly selective for ALK2 over the TGF-ßR1 receptor ALK5, M4K2009 is also moderately active against the hERG potassium channel. Varying the substituents of the trimethoxyphenyl moiety gave rise to an equipotent benzamide analogue M4K2149 with reduced off-target affinity for the ion channel. Additional modifications yielded 2-fluoro-6-methoxybenzamide derivatives (26a-c), which possess high inhibitory activity against ALK2, excellent selectivity, and superior pharmacokinetic profiles.


Activin Receptors, Type I/antagonists & inhibitors , Benzamides/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Activin Receptors, Type I/genetics , Animals , Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability/drug effects , Diffuse Intrinsic Pontine Glioma/drug therapy , Female , HEK293 Cells , Humans , Male , Mice, SCID , Microsomes, Liver/metabolism , Molecular Structure , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Structure-Activity Relationship
12.
Biomolecules ; 10(4)2020 04 14.
Article En | MEDLINE | ID: mdl-32295120

RUVBL1 and RUVBL2 are highly conserved ATPases that belong to the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various complexes and cellular processes, several of which are closely linked to oncogenesis. The proteins were implicated in DNA damage signaling and repair, chromatin remodeling, telomerase activity, and in modulating the transcriptional activities of proto-oncogenes such as c-Myc and ß-catenin. Moreover, both proteins were found to be overexpressed in several different types of cancers such as breast, lung, kidney, bladder, and leukemia. Given their various roles and strong involvement in carcinogenesis, the RUVBL proteins are considered to be novel targets for the discovery and development of therapeutic cancer drugs. Here, we describe the identification of sorafenib as a novel inhibitor of the ATPase activity of human RUVBL2. Enzyme kinetics and surface plasmon resonance experiments revealed that sorafenib is a weak, mixed non-competitive inhibitor of the protein's ATPase activity. Size exclusion chromatography and small angle X-ray scattering data indicated that the interaction of sorafenib with RUVBL2 does not cause a significant effect on the solution conformation of the protein; however, the data suggested that the effect of sorafenib on RUVBL2 activity is mediated by the insertion domain in the protein. Sorafenib also inhibited the ATPase activity of the RUVBL1/2 complex. Hence, we propose that sorafenib could be further optimized to be a potent inhibitor of the RUVBL proteins.


ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Carrier Proteins/antagonists & inhibitors , DNA Helicases/antagonists & inhibitors , Sorafenib/pharmacology , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Aggregates/drug effects , Protein Multimerization/drug effects , Sorafenib/chemistry
13.
J Transl Med ; 14: 67, 2016 Mar 08.
Article En | MEDLINE | ID: mdl-26952093

BACKGROUND: Leiomyosarcoma (LMS) is a common type of soft tissue sarcoma that responds poorly to standard chemotherapy. Thus the goal of this study was to identify novel selective therapies that may be effective in leiomyosarcoma by screening cell lines with a small molecule library comprised of 480 kinase inhibitors to functionally determine which signalling pathways may be critical for LMS growth. METHODS: LMS cell lines were screened with the OICR kinase library and a cell viability assay was used to identify potentially effective compounds. The top 10 % of hits underwent secondary validation to determine their EC50 and immunoblots were performed to confirm selective drug action. The efficacy of combination drug therapy with doxorubicin (Dox) in vitro was analyzed using the Calcusyn program after treatment with one of three dosing schedules: concurrent treatment, initial treatment with a selective compound followed by Dox, or initial treatment with Dox followed by the selective compound. Single and combination drug therapy were then validated in vivo using LMS xenografts. RESULTS: Compounds that targeted PI3K/AKT/mTOR pathways (52 %) were most effective. EC50s were determined to validate these initial hits, and of the 11 confirmed hits, 10 targeted PI3K and/or mTOR pathways with EC50 values <1 µM. We therefore examined if BEZ235 and BKM120, two selective compounds in these pathways, would inhibit leiomyosarcoma growth in vitro. Immunoblots confirmed on-target effects of these compounds in the PI3K and/or mTOR pathways. We next investigated if there was synergy with these agents and first line chemotherapy doxorubicin (Dox), which would allow for earlier introduction into patient care. Only combined treatment of BEZ235 and Dox was synergistic in vitro. To validate these findings in pre-clinical models, leiomyosarcoma xenografts were treated with single agent and combination therapy. BEZ235 treated xenografts (n = 8) demonstrated a decrease in tumor volume of 42 % whereas combining BEZ235 with Dox (n = 8) decreased tumor volume 68 % compared to vehicle alone. CONCLUSIONS: In summary, this study supports further investigation into the use of PI3K and mTOR inhibitors alone and in combination with standard treatment in leiomyosarcoma patients.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/therapeutic use , Leiomyosarcoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Evaluation, Preclinical , Drug Synergism , Female , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Leiomyosarcoma/pathology , Mice, Inbred NOD , Morpholines/pharmacology , Morpholines/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Quinolines/therapeutic use , Reproducibility of Results , TOR Serine-Threonine Kinases/metabolism
14.
Sci Signal ; 5(246): ra75, 2012 Oct 16.
Article En | MEDLINE | ID: mdl-23074266

The fusion of mononucleated muscle progenitor cells (myoblasts) into multinucleated muscle fibers is a critical aspect of muscle development and regeneration. We identified the noncanonical nuclear factor κB (NF-κB) pathway as a signaling axis that drives the recruitment of myoblasts into new muscle fibers. Loss of cellular inhibitor of apoptosis 1 (cIAP1) protein led to constitutive activation of the noncanonical NF-κB pathway and an increase in the number of nuclei per myotube. Knockdown of essential mediators of NF-κB signaling, such as p100, RelB, inhibitor of κB kinase α, and NF-κB-inducing kinase, attenuated myoblast fusion in wild-type myoblasts. In contrast, the extent of myoblast fusion was increased when the activity of the noncanonical NF-κB pathway was enhanced by increasing the abundance of p52 and RelB or decreasing the abundance of tumor necrosis factor (TNF) receptor-associated factor 3, an inhibitor of this pathway. Low concentrations of the cytokine TNF-like weak inducer of apoptosis (TWEAK), which preferentially activates the noncanonical NF-κB pathway, also increased myoblast fusion, without causing atrophy or impairing myogenesis. These results identify roles for TWEAK, cIAP1, and noncanonical NF-κB signaling in the regulation of myoblast fusion and highlight a role for cytokine signaling during adult skeletal myogenesis.


Gene Expression Regulation , Inhibitor of Apoptosis Proteins/physiology , Myoblasts/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factors/physiology , Animals , Bromodeoxyuridine/pharmacology , Cell Line , Cytokine TWEAK , Genotype , Inhibitor of Apoptosis Proteins/genetics , Mice , Mice, Transgenic , Models, Biological , Muscle, Skeletal/metabolism , Muscles/metabolism , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Necrosis Factors/genetics
15.
Bioorg Med Chem Lett ; 22(22): 6974-9, 2012 Nov 15.
Article En | MEDLINE | ID: mdl-23046966

AZD9272 and AZD6538 are two novel mGluR5 negative allosteric modulators selected for further clinical development. An initial high-throughput screening revealed leads with promising profiles, which were further optimized by minor, yet indispensable, structural modifications to bring forth these drug candidates. Advantageously, both compounds may be synthesized in as little as one step. Both are highly potent and selective for the human as well as the rat mGluR5 where they interact at the same binding site than MPEP. They are orally available, allow for long interval administration due to a high metabolic stability and long half-lives in rats and permeate the blood brain barrier to a high extent. AZD9272 has progressed into phase I clinical studies.


Oxadiazoles/chemistry , Pyridines/chemistry , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Animals , Binding Sites , Central Nervous System/diagnostic imaging , Drug Evaluation, Preclinical , HEK293 Cells , Half-Life , Humans , Isotope Labeling , Male , Microsomes/metabolism , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radionuclide Imaging , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/metabolism , Structure-Activity Relationship
16.
Blood ; 119(5): 1200-7, 2012 Feb 02.
Article En | MEDLINE | ID: mdl-22160482

Gene regulatory networks that govern hematopoietic stem cells (HSCs) and leukemia-initiating cells (L-ICs) are deeply entangled. Thus, the discovery of compounds that target L-ICs while sparing HSC is an attractive but difficult endeavor. Presently, most screening approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPCs). Here, we present a multistep in vitro and in vivo approach to identify compounds that can target L-ICs in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which 10 were less toxic to HSPC. We characterized a single compound, kinetin riboside (KR), on AML L-ICs and HSPCs. KR demonstrated comparable efficacy to standard therapies against blast cells in 63 primary leukemias. In vitro, KR targeted the L-IC-enriched CD34(+)CD38(-) AML fraction, while sparing HSPC-enriched fractions, although these effects were mitigated on HSC assayed in vivo. KR eliminated L-ICs in 2 of 4 primary AML samples when assayed in vivo and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti-L-IC compounds for human leukemias.


Adenosine/therapeutic use , High-Throughput Screening Assays/methods , Kinetin/therapeutic use , Leukemia/drug therapy , Leukemia/pathology , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/analysis , Adenosine/analysis , Adenosine/isolation & purification , Adenosine/pharmacology , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Kinetin/analysis , Kinetin/isolation & purification , Kinetin/pharmacology , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplastic Stem Cells/pathology , Treatment Outcome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Cancer Res ; 71(24): 7628-39, 2011 Dec 15.
Article En | MEDLINE | ID: mdl-22009536

Excessive signaling from the Wnt pathway is associated with numerous human cancers. Using a high throughput screen designed to detect inhibitors of Wnt/ß-catenin signaling, we identified a series of acyl hydrazones that act downstream of the ß-catenin destruction complex to inhibit both Wnt-induced and cancer-associated constitutive Wnt signaling via destabilization of ß-catenin. We found that these acyl hydrazones bind iron in vitro and in intact cells and that chelating activity is required to abrogate Wnt signaling and block the growth of colorectal cancer cell lines with constitutive Wnt signaling. In addition, we found that multiple iron chelators, desferrioxamine, deferasirox, and ciclopirox olamine similarly blocked Wnt signaling and cell growth. Moreover, in patients with AML administered ciclopirox olamine, we observed decreased expression of the Wnt target gene AXIN2 in leukemic cells. The novel class of acyl hydrazones would thus be prime candidates for further development as chemotherapeutic agents. Taken together, our results reveal a critical requirement for iron in Wnt signaling and they show that iron chelation serves as an effective mechanism to inhibit Wnt signaling in humans.


Hydrazones/pharmacology , Iron/metabolism , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Acute Disease , Administration, Oral , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Ciclopirox , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Deferasirox , Deferoxamine/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Hydrazones/chemistry , Iron Chelating Agents/pharmacology , Leukemia, Myeloid/drug therapy , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Pyridones/administration & dosage , Pyridones/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Triazoles/pharmacology , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics
18.
Cancer Cell ; 20(4): 443-56, 2011 Oct 18.
Article En | MEDLINE | ID: mdl-22014571

To identify therapeutic opportunities for oncolytic viral therapy, we conducted genome-wide RNAi screens to search for host factors that modulate rhabdoviral oncolysis. Our screens uncovered the endoplasmic reticulum (ER) stress response pathways as important modulators of rhabdovirus-mediated cytotoxicity. Further investigation revealed an unconventional mechanism whereby ER stress response inhibition preconditioned cancer cells, which sensitized them to caspase-2-dependent apoptosis induced by a subsequent rhabdovirus infection. Importantly, this mechanism was tumor cell specific, selectively increasing potency of the oncolytic virus by up to 10,000-fold. In vivo studies using a small molecule inhibitor of IRE1α showed dramatically improved oncolytic efficacy in resistant tumor models. Our study demonstrates proof of concept for using functional genomics to improve biotherapeutic agents for cancer.


Endoplasmic Reticulum Stress , Endoplasmic Reticulum/physiology , Oncolytic Viruses/physiology , Animals , Apoptosis/physiology , Caspase 2/metabolism , Caspase 2/physiology , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/physiology , Endoribonucleases/antagonists & inhibitors , Female , Genomics/methods , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/virology , Humans , Mice , Mice, Nude , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Oncolytic Viruses/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/virology , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA Interference , Rhabdoviridae/physiology
19.
Drug Resist Updat ; 14(4-5): 203-11, 2011.
Article En | MEDLINE | ID: mdl-21601509

Resistance to chemotherapeutic drugs is a significant clinical problem for the treatment of cancer patients and has been linked to the activation of survival pathways and expression of multidrug efflux transporters. Thus inhibition of these survival pathways or efflux transporter expression may increase the efficacy of drug treatment. Here we review the role of the oncogenic PIM kinase family in regulating important proliferation and survival pathways in cancer cells and the involvement of PIM kinases in the expression and activity of MDR-1 and BCRP, two of the most important drug efflux transporters. PIM kinases are over expressed in various types of tumors and regulate the activation of signaling pathways that are important for tumor cell proliferation, survival and expression of drug efflux proteins. This makes PIM kinases attractive targets for the development of anti-cancer chemotherapeutic drugs. Focussing mainly on solid tumors, we provide an update on the literature describing the tumorigenic functions of PIM kinases. Also we provide an overview of the development of selective small molecule PIM kinase inhibitors. Because of the intense effort by pharmaceutical companies and academia it is reasonable to expect that PIM kinase inhibitors will enter the clinic in the foreseeable future. We therefore finish this review with a discussion on the most efficient application of these PIM inhibitors. This includes a consideration of which tumor type is the most appropriate target for treatment, how to select the patient population that stands to gain the most from treatment with PIM inhibitors, which molecular markers are suitable to follow the course of treatment and whether PIM kinase inhibitors should be used as monotherapy or in combination with other cytotoxic agents.


Drug Resistance, Neoplasm/physiology , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-pim-1/physiology , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Humans , Mice , Molecular Targeted Therapy , Neoplasm Proteins/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/physiopathology , Protein Kinase Inhibitors/pharmacology
20.
Cancer Res ; 71(4): 1385-95, 2011 Feb 15.
Article En | MEDLINE | ID: mdl-21303981

Neuroblastoma (NB) is an often fatal pediatric tumor of neural crest origin. We previously isolated NB tumor-initiating cells (NB TIC) from bone marrow metastases that resemble cancer stem cells and form metastatic NB in immunodeficient animals with as few as ten cells. To identify signaling pathways important for the survival and self-renewal of NB TICs and potential therapeutic targets, we screened a small molecule library of 143 protein kinase inhibitors, including 33 in clinical trials. Cytostatic or cytotoxic drugs were identified that targeted PI3K (phosphoinositide 3-kinase)/Akt, PKC (protein kinase C), Aurora, ErbB2, Trk, and Polo-like kinase 1 (PLK1). Treatment with PLK1 siRNA or low nanomolar concentrations of BI 2536 or BI 6727, PLK1 inhibitors in clinical trials for adult malignancies, were cytotoxic to TICs whereas only micromolar concentrations of the inhibitors were cytotoxic for normal pediatric neural stem cells. Furthermore, BI 2536 significantly inhibited TIC tumor growth in a therapeutic xenograft model, both as a single agent and in combination with irinotecan, an active agent for relapsed NB. Our findings identify candidate kinases that regulate TIC growth and survival and suggest that PLK1 inhibitors are an attractive candidate therapy for metastatic NB.


Brain Neoplasms/prevention & control , Cell Cycle Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Neuroblastoma/prevention & control , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Small Molecule Libraries/analysis , Algorithms , Animals , Brain Neoplasms/pathology , Cells, Cultured , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy/methods , Neoplastic Stem Cells/pathology , Neuroblastoma/pathology , Protein Kinase Inhibitors/analysis , Pteridines/pharmacology , Pteridines/therapeutic use , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
...