Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(5): 115, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918439

RESUMEN

Metabolic engineering is a substantial approach for escalating the production of biochemical products. Cell biomass is lowered by system constraints and toxication carried on by the aggregation of metabolites that serve as inhibitors of product synthesis. In order to increase the production of biochemical products, it is important to trace the relationship between alanine metabolism and biomass. According to our investigation, the appropriate concentration of additional L/D-alanine (0.1 g/L) raised the cell biomass (OD600) in Bacillus licheniformis in contrast to the control strain. Remarkably, it was also determined that high levels of intracellular L/D-alanine and D-alanyl-D-alanine were induced by the overexpression of the ald, dal, and ddl genes to accelerate cell proliferation. Our findings clearly revealed that 0.2 g/L of L-alanine and D-alanine substantially elevated the titer of poly-γ-glutamic acid (γ-PGA) by 14.89% and 6.19%, correspondingly. And the levels of γ-PGA titer were hastened by the overexpression of the ald, dal, and ddl genes by 19.72%, 15.91%, and 16.64%, respectively. Furthermore, overexpression of ald, dal, and ddl genes decreased the by-products (acetoin, 2,3-butanediol, acetic acid and lactic acid) formation by about 14.10%, 8.77%, and 8.84% for augmenting the γ-PGA production. Our results also demonstrated that overexpression of ald gene amplified the production of lichenysin, pulcherrimin and nattokinase by about 18.71%, 19.82% and 21.49%, respectively. This work delineated the importance of the L/D-alanine and D-alanyl-D-alanine synthesis to the cell growth and the high production of bio-products, and provided an effective strategy for producing bio-products.


Asunto(s)
Bacillus licheniformis , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Ingeniería Metabólica , Ácido Acético/metabolismo , Ácido Poliglutámico/metabolismo
2.
Appl Biochem Biotechnol ; 195(3): 1752-1769, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36394712

RESUMEN

Biotransformation of wasted feathers via feather-degrading enzyme has gained immense popularity, low conversion efficiency hinders its scale application, and the main purpose of this study is to improve feather-degrading enzyme production in Bacillus licheniformis. Firstly, keratinase from Bacillus amyloliquefaciens K11 was attained with the best performance for feather hydrolysis, via screening several extracellular proteases from Bacillus; also, feather powder was proven as the most suitable substrate for determination of feather-degrading enzyme activity. Then, expression elements, including signal peptides and promoters, were optimized, and the combination of signal peptide SPSacC with promoter Pdual3 owned the best performance, keratinase activity aggrandized by 6.21-fold. According to amino acid compositions of keratinase and feeding assays, Ala, Val, and Ser were proven as critical precursors, and strengthening these precursors' supplies via metabolic pathway optimization resulted in a 33.59% increase in the keratinase activity. Furthermore, keratinase activity reached 2210.66 U/mL, up to 56.74-fold from the original activity under the optimized fermentation condition in 3-L fermentor. Finally, the biotransformation process of discarded feathers by the fermented keratinase was optimized, and our results indicated that 90.94% of discarded feathers (16%, w/v) were decomposed in 12 h. Our results suggested that strengthening precursor amino acids' supplies was an efficient strategy for enhanced production of keratinase, and this research provided an efficient strain as well as the biotransformation process for discarded feather re-utilization.


Asunto(s)
Pollos , Plumas , Animales , Plumas/química , Péptido Hidrolasas/química , Biotransformación , Concentración de Iones de Hidrógeno , Queratinas
3.
J Pharm Pharmacol ; 74(12): 1700-1717, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36039938

RESUMEN

OBJECTIVES: Lupinus is a large and diverse genus comprising approximately 200 species, belonging to the family Fabaceae. Lupinus plants have been used for heart stimulants, nerves, urinary tract infections, skin disorders, and psoriasis in folk medicine. This review aims to recap the traditional medicinal uses, nutritional value, phytochemical profile, and biological activities of Lupinus species. KEY FINDINGS: From the literature survey, Lupinus is considered as a factory of various phytochemicals like flavonoids, iso-flavonoids, alkaloids, triterpenoids. The presence of proteins, essential fatty acids, and amino acids, as well as alkaloids, minerals, and dietary fibers, indicated that the plants in this genus had a high nutritional value. The Lupinus extracts displayed promising antidiabetic, anticancer, antimicrobial, antidiabetic, antihypertensive, antioxidant, anti-inflammatory, and antimicrobial activities. CONCLUSIONS: The current review provides updated information that could drive the researchers for further studies. The in vitro and in vivo experiments have demonstrated various pharmacological properties. Some pharmacokinetic and toxicological investigations are warranted to ensure its safety and validity for human use.


Asunto(s)
Lupinus , Humanos , Etnofarmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fitoterapia
4.
Curr Pharm Des ; 27(20): 2344-2365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33655849

RESUMEN

A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a leading cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk factors, such as genetic and environmental factors, favor breast cancer development. This review tends to provide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic approaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data mainly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective treatment options.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...