Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
bioRxiv ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38562734

Many different anesthetics cause loss of responsiveness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examined how ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, and dexmedetomidine, an α2 adrenergic receptor agonist, affected neural oscillations in the prefrontal cortex of nonhuman primates. Previous work has shown that anesthesia increases phase locking of low-frequency local field potential activity across cortex. We observed similar increases with anesthetic doses of ketamine and dexmedetomidine in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varied between regions. We found that oscillatory activity in different prefrontal subregions within each hemisphere became more anti-phase with both drugs. Local analyses within a region suggested that this finding could be explained by broad cortical distance-based effects, such as a large traveling wave. By contrast, homologous areas across hemispheres increased their phase alignment. Our results suggest that the drugs induce strong patterns of cortical phase alignment that are markedly different from those in the awake state, and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.

2.
Mol Psychiatry ; 28(11): 4540-4552, 2023 Nov.
Article En | MEDLINE | ID: mdl-37029295

Neuroinflammatory disorders preferentially impair the higher cognitive and executive functions of the prefrontal cortex (PFC). This includes such challenging disorders as delirium, perioperative neurocognitive disorder, and the sustained cognitive deficits from "long-COVID" or traumatic brain injury. There are no FDA-approved treatments for these symptoms; thus, understanding their etiology is important for generating therapeutic strategies. The current review describes the molecular rationale for why PFC circuits are especially vulnerable to inflammation, and how α2A-adrenoceptor (α2A-AR) actions throughout the nervous and immune systems can benefit the circuits in PFC needed for higher cognition. The layer III circuits in the dorsolateral PFC (dlPFC) that generate and sustain the mental representations needed for higher cognition have unusual neurotransmission and neuromodulation. They are wholly dependent on NMDAR neurotransmission, with little AMPAR contribution, and thus are especially vulnerable to kynurenic acid inflammatory signaling which blocks NMDAR. Layer III dlPFC spines also have unusual neuromodulation, with cAMP magnification of calcium signaling in spines, which opens nearby potassium channels to rapidly weaken connectivity and reduce neuronal firing. This process must be tightly regulated, e.g. by mGluR3 or α2A-AR on spines, to prevent loss of firing. However, the production of GCPII inflammatory signaling reduces mGluR3 actions and markedly diminishes dlPFC network firing. Both basic and clinical studies show that α2A-AR agonists such as guanfacine can restore dlPFC network firing and cognitive function, through direct actions in the dlPFC, but also by reducing the activity of stress-related circuits, e.g. in the locus coeruleus and amygdala, and by having anti-inflammatory actions in the immune system. This information is particularly timely, as guanfacine is currently the focus of large clinical trials for the treatment of delirium, and in open label studies for the treatment of cognitive deficits from long-COVID.


Cognitive Dysfunction , Delirium , Humans , Calcium Signaling , Guanfacine/pharmacology , Guanfacine/therapeutic use , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome , Prefrontal Cortex
3.
Alzheimers Dement ; 19(5): 2150-2174, 2023 05.
Article En | MEDLINE | ID: mdl-36799408

Delirium is a common, morbid, and costly syndrome that is closely linked to Alzheimer's disease (AD) and AD-related dementias (ADRD) as a risk factor and outcome. Human studies of delirium have advanced our knowledge of delirium incidence and prevalence, risk factors, biomarkers, outcomes, prevention, and management. However, understanding of delirium neurobiology remains limited. Preclinical and translational models for delirium, while challenging to develop, could advance our knowledge of delirium neurobiology and inform the development of new prevention and treatment approaches. We discuss the use of preclinical and translational animal models in delirium, focusing on (1) a review of current animal models, (2) challenges and strategies for replicating elements of human delirium in animals, and (3) the utility of biofluid, neurophysiology, and neuroimaging translational markers in animals. We conclude with recommendations for the development and validation of preclinical and translational models for delirium, with the goal of advancing awareness in this important field.


Alzheimer Disease , Delirium , Animals , Humans , Alzheimer Disease/complications , Risk Factors , Neuroimaging , Incidence , Delirium/epidemiology
4.
J Clin Med ; 11(2)2022 Jan 15.
Article En | MEDLINE | ID: mdl-35054139

Perioperative neurocognitive disorder (PND) is a growing concern, affecting several million elderly patients each year in the United States, but strategies for its effective prevention have not yet been established. Humeidan et al. recently demonstrated that preoperative brain exercise resulted in a decrease in postoperative delirium incidence in elderly surgical patients, suggesting the potential of presurgical cognitive optimization to improve postoperative cognitive outcomes. This brief review summarizes the current knowledge regarding preoperative cognitive optimization and highlights landmark studies, as well as current ongoing studies, as the field is rapidly growing. This review further discusses the benefit of cognitive training in non-surgical elderly populations and the role of cognitive training in patients with preexisting cognitive impairment or dementia. The review also examines preclinical evidence in support of cognitive training, which can facilitate understanding of brain plasticity and the pathophysiology of PND. The literature suggests positive impacts of presurgical cognitive optimization, but further studies are encouraged to establish effective cognitive training programs for elderly presurgical patients.

5.
Elife ; 92020 08 28.
Article En | MEDLINE | ID: mdl-32857037

How the brain dynamics change during anesthetic-induced altered states of consciousness is not completely understood. The α2-adrenergic agonists are unique. They generate unconsciousness selectively through α2-adrenergic receptors and related circuits. We studied intracortical neuronal dynamics during transitions of loss of consciousness (LOC) with the α2-adrenergic agonist dexmedetomidine and return of consciousness (ROC) in a functionally interconnecting somatosensory and ventral premotor network in non-human primates. LOC, ROC and full task performance recovery were all associated with distinct neural changes. The early recovery demonstrated characteristic intermediate dynamics distinguished by sustained high spindle activities. Awakening by the α2-adrenergic antagonist completely eliminated this intermediate state and instantaneously restored awake dynamics and the top task performance while the anesthetic was still being infused. The results suggest that instantaneous functional recovery is possible following anesthetic-induced unconsciousness and the intermediate recovery state is not a necessary path for the brain recovery.


Adrenergic alpha-Agonists/administration & dosage , Brain/drug effects , Consciousness/drug effects , Dexmedetomidine/administration & dosage , Unconsciousness/chemically induced , Adrenergic alpha-Antagonists/administration & dosage , Animals , Brain/physiopathology , Electroencephalography , Humans , Hypnotics and Sedatives , Imidazoles/administration & dosage , Macaca , Male , Unconsciousness/physiopathology , Wakefulness/drug effects
6.
Anesthesiology ; 132(4): 750-762, 2020 04.
Article En | MEDLINE | ID: mdl-32053559

BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate antagonist and is known for unique electrophysiologic profiles in electroencephalography. However, the mechanisms of ketamine-induced unconsciousness are not clearly understood. The authors have investigated neuronal dynamics of ketamine-induced loss and return of consciousness and how multisensory processing is modified in the primate neocortex. METHODS: The authors performed intracortical recordings of local field potentials and single unit activity during ketamine-induced altered states of consciousness in a somatosensory and ventral premotor network. The animals were trained to perform a button holding task to indicate alertness. Air puff to face or sound was randomly delivered in each trial regardless of their behavioral response. Ketamine was infused for 60 min. RESULTS: Ketamine-induced loss of consciousness was identified during a gradual evolution of the high beta-gamma oscillations. The slow oscillations appeared to develop at a later stage of ketamine anesthesia. Return of consciousness and return of preanesthetic performance level (performance return) were observed during a gradual drift of the gamma oscillations toward the beta frequency. Ketamine-induced loss of consciousness, return of consciousness, and performance return are all identified during a gradual change of the dynamics, distinctive from the abrupt neural changes at propofol-induced loss of consciousness and return of consciousness. Multisensory responses indicate that puff evoked potentials and single-unit firing responses to puff were both preserved during ketamine anesthesia, but sound responses were selectively diminished. Units with suppressed responses and those with bimodal responses appeared to be inhibited under ketamine and delayed in recovery. CONCLUSIONS: Ketamine generates unique intracortical dynamics during its altered states of consciousness, suggesting fundamentally different neuronal processes from propofol. The gradually shifting dynamics suggest a continuously conscious or dreaming state while unresponsive under ketamine until its deeper stage with the slow-delta oscillations. Somatosensory processing is preserved during ketamine anesthesia, but multisensory processing appears to be diminished under ketamine and through recovery.


Anesthetics, Dissociative/administration & dosage , Consciousness/drug effects , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Neocortex/drug effects , Unconsciousness/chemically induced , Animals , Consciousness/physiology , Electroencephalography/drug effects , Electroencephalography/methods , Infusions, Intravenous , Macaca mulatta , Male , Neocortex/physiology , Unconsciousness/physiopathology
7.
Brain ; 143(3): 833-843, 2020 03 01.
Article En | MEDLINE | ID: mdl-32049333

How the brain recovers from general anaesthesia is poorly understood. Neurocognitive problems during anaesthesia recovery are associated with an increase in morbidity and mortality in patients. We studied intracortical neuronal dynamics during transitions from propofol-induced unconsciousness into consciousness by directly recording local field potentials and single neuron activity in a functionally and anatomically interconnecting somatosensory (S1, S2) and ventral premotor (PMv) network in primates. Macaque monkeys were trained for a behavioural task designed to determine trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We found that neuronal dynamics were dissociated between S1 and higher-order PMv prior to return of consciousness. The return of consciousness was distinguishable by a distinctive return of interregionally coherent beta oscillations and disruption of the slow-delta oscillations. Clustering analysis demonstrated that these state transitions between wakefulness and unconsciousness were rapid and unstable. In contrast, return of pre-anaesthetic task performance was observed with a gradual increase in the coherent beta oscillations. We also found that recovery end points significantly varied intra-individually across sessions, as compared to a rather consistent loss of consciousness time. Recovery of single neuron multisensory responses appeared to be associated with the time of full performance recovery rather than the length of recovery time. Similar to loss of consciousness, return of consciousness was identified with an abrupt shift of dynamics and the regions were dissociated temporarily during the transition. However, the actual dynamics change during return of consciousness is not simply an inverse of loss of consciousness, suggesting a unique process.


Brain Waves/physiology , Consciousness/physiology , Motor Cortex/physiology , Propofol/pharmacology , Somatosensory Cortex/physiology , Unconsciousness/physiopathology , Acoustic Stimulation , Action Potentials/physiology , Anesthesia Recovery Period , Animals , Arousal/physiology , Auditory Perception/physiology , Electroencephalography , Macaca , Male , Neural Pathways/physiology , Primates , Touch Perception/physiology , Unconsciousness/chemically induced
8.
J Neurosci ; 39(38): 7485-7500, 2019 09 18.
Article En | MEDLINE | ID: mdl-31358654

Both the global neuronal workspace (GNW) and integrated information theory (IIT) posit that highly complex and interconnected networks engender perceptual awareness. GNW specifies that activity recruiting frontoparietal networks will elicit a subjective experience, whereas IIT is more concerned with the functional architecture of networks than with activity within it. Here, we argue that according to IIT mathematics, circuits converging on integrative versus convergent yet non-integrative neurons should support a greater degree of consciousness. We test this hypothesis by analyzing a dataset of neuronal responses collected simultaneously from primary somatosensory cortex (S1) and ventral premotor cortex (vPM) in nonhuman primates presented with auditory, tactile, and audio-tactile stimuli as they are progressively anesthetized with propofol. We first describe the multisensory (audio-tactile) characteristics of S1 and vPM neurons (mean and dispersion tendencies, as well as noise-correlations), and functionally label these neurons as convergent or integrative according to their spiking responses. Then, we characterize how these different pools of neurons behave as a function of consciousness. At odds with the IIT mathematics, results suggest that convergent neurons more readily exhibit properties of consciousness (neural complexity and noise correlation) and are more impacted during the loss of consciousness than integrative neurons. Last, we provide support for the GNW by showing that neural ignition (i.e., same trial coactivation of S1 and vPM) was more frequent in conscious than unconscious states. Overall, we contrast GNW and IIT within the same single-unit activity dataset, and support the GNW.SIGNIFICANCE STATEMENT A number of prominent theories of consciousness exist, and a number of these share strong commonalities, such as the central role they ascribe to integration. Despite the important and far reaching consequences developing a better understanding of consciousness promises to bring, for instance in diagnosing disorders of consciousness (e.g., coma, vegetative-state, locked-in syndrome), these theories are seldom tested via invasive techniques (with high signal-to-noise ratios), and never directly confronted within a single dataset. Here, we first derive concrete and testable predictions from the global neuronal workspace and integrated information theory of consciousness. Then, we put these to the test by functionally labeling specific neurons as either convergent or integrative nodes, and examining the response of these neurons during anesthetic-induced loss of consciousness.


Consciousness/physiology , Models, Neurological , Models, Theoretical , Neural Pathways/physiology , Neurons/physiology , Animals , Macaca mulatta , Male
9.
J Neurosci ; 36(29): 7718-26, 2016 07 20.
Article En | MEDLINE | ID: mdl-27445148

UNLABELLED: The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We show that disruption of coherent beta oscillations between S1 and PMv preceded, but did not coincide with, the LOC. LOC appeared to correspond to pronounced but brief gamma-/high-beta-band oscillations (lasting ∼3 min) in PMv, followed by a gamma peak in S1. We also demonstrate that the slow oscillations appeared after LOC in S1 and then in PMv after a delay, together suggesting that neuronal dynamics are very different across S1 versus PMv during LOC. Finally, neurons in both S1 and PMv transition from responding to bimodal (tactile and auditory) stimulation before LOC to only tactile modality during unconsciousness, consistent with an inhibition of multisensory integration in this network. Our results show that propofol-induced LOC is accompanied by spatiotemporally distinct oscillatory neuronal dynamics across the somatosensory and premotor network and suggest that a transitional state from wakefulness to unconsciousness is not a continuous process, but rather a series of discrete neural changes. SIGNIFICANCE STATEMENT: How information is processed by the brain during awake and anesthetized states and, crucially, during the transition is not clearly understood. We demonstrate that neuronal dynamics are very different within an interconnecting cortical network (primary somatosensory and frontal premotor area) during the loss of consciousness (LOC) induced by propofol in nonhuman primates. Coherent beta oscillations between these regions are disrupted before LOC. Pronounced but brief gamma-band oscillations appear to correspond to LOC. In addition, neurons in both of these cortices transition from responding to both tactile and auditory stimulation before LOC to only tactile modality during unconsciousness. We demonstrate that propofol-induced LOC is accompanied by spatiotemporally distinctive neuronal dynamics in this network with concurrent changes in multisensory processing.


Brain Mapping , Hypnotics and Sedatives/toxicity , Neocortex/physiopathology , Nonlinear Dynamics , Propofol/toxicity , Unconsciousness/chemically induced , Unconsciousness/pathology , Action Potentials/drug effects , Animals , Electroencephalography , Evoked Potentials/drug effects , Macaca mulatta , Male , Neocortex/drug effects , Physical Stimulation , Psychomotor Performance/drug effects
10.
Front Behav Neurosci ; 8: 114, 2014.
Article En | MEDLINE | ID: mdl-24765069

The nucleus accumbens core (NAcc) has been implicated in learning associations between sensory cues and profitable motor responses. However, the precise mechanisms that underlie these functions remain unclear. We recorded single-neuron activity from the NAcc of primates trained to perform a visual-motor associative learning task. During learning, we found two distinct classes of NAcc neurons. The first class demonstrated progressive increases in firing rates at the go-cue, feedback/tone and reward epochs of the task, as novel associations were learned. This suggests that these neurons may play a role in the exploitation of rewarding behaviors. In contrast, the second class exhibited attenuated firing rates, but only at the reward epoch of the task. These findings suggest that some NAcc neurons play a role in reward-based reinforcement during learning.

11.
J Clin Anesth ; 25(8): 669-71, 2013 Dec.
Article En | MEDLINE | ID: mdl-23988805

The risk of a false-positive urine drug screen is one of the major impediments to widespread implementation of drug testing programs in anesthesiology. A case of a false-positive urine screen for ketamine in an anesthesia provider is presented, with recommendations for methods of managing such an event.


Anesthesiology , Physician Impairment , Substance Abuse Detection/methods , Substance-Related Disorders/diagnosis , Anesthetics, Dissociative/urine , False Positive Reactions , Humans , Ketamine/urine , Physicians
12.
Anesth Analg ; 112(1): 213-7, 2011 Jan.
Article En | MEDLINE | ID: mdl-21048097

General anesthetics are administered to approximately 50 million patients each year in the United States. Anesthetic vapors and gases are also widely used in dentists' offices, veterinary clinics, and laboratories for animal research. All the volatile anesthetics that are currently used are halogenated compounds destructive to the ozone layer. These halogenated anesthetics could have potential significant impact on global warming. The widely used anesthetic gas nitrous oxide is a known greenhouse gas as well as an important ozone-depleting gas. These anesthetic gases and vapors are primarily eliminated through exhalation without being metabolized in the body, and most anesthesia systems transfer these gases as waste directly and unchanged into the atmosphere. Little consideration has been given to the ecotoxicological properties of gaseous general anesthetics. Our estimation using the most recent consumption data indicates that the anesthetic use of nitrous oxide contributes 3.0% of the total emissions in the United States. Studies suggest that the influence of halogenated anesthetics on global warming will be of increasing relative importance given the decreasing level of chlorofluorocarbons globally. Despite these nonnegligible pollutant effects of the anesthetics, no data on the production or emission of these gases and vapors are publicly available. The primary goal of this article is to critically review the current data on the potential effects of general anesthetics on the global environment and to describe possible alternatives and new technologies that may prevent these gases from being discharged into the atmosphere.


Anesthetics, Inhalation/adverse effects , Environmental Exposure/prevention & control , Global Warming/prevention & control , Anesthetics, General/adverse effects , Anesthetics, General/pharmacokinetics , Anesthetics, Inhalation/pharmacokinetics , Animals , Atmosphere/chemistry , Environmental Exposure/adverse effects , Humans
13.
J Anesth ; 21(2): 187-99, 2007.
Article En | MEDLINE | ID: mdl-17458649

The neural mechanisms behind anesthetic-induced behavioral changes such as loss of consciousness, amnesia, and analgesia, are insufficiently understood, though general anesthesia has been of tremendous importance for the development of medicine. In this review, I summarize what is currently known about general anesthetic actions at different organizational levels and discuss current and future research, using systems neuroscience approaches such as functional neuroimaging and quantitative electrophysiology to understand anesthesia actions at the integrated brain level.


Anesthesia , Anesthetics/pharmacology , Brain/drug effects , Neurons/physiology , Animals , Humans , Ion Channels/drug effects , Ion Channels/physiology , Nerve Net/drug effects , Nerve Net/physiology , Neurons/drug effects
14.
Mol Cell Neurosci ; 30(4): 506-12, 2005 Dec.
Article En | MEDLINE | ID: mdl-16185894

Ion channels and ionotropic neurotransmitter receptors have long been investigated as the principle targets of inhaled volatile anesthetics (VAs), but emerging evidence suggests that G-protein coupled receptors (GPCRs) might also directly interact with VAs. To survey the extent of interaction between VAs and diverse GPCRs, we have turned to the 1000+ member family of olfactory receptors (ORs), taking advantage of their unique expression pattern of a single OR per neuron. Through optical imaging and electrophysiological recordings, we show that different VAs trigger the normal transduction cascade in distinct subsets of cells in a dose-dependant manner. Together with evidence of antagonism by odorants, this selective activation strongly implicates a direct action of VAs upon particular olfactory receptors. The finding that VAs stimulate nearly 8% of olfactory GPCRs suggests that probing related Class A GPCRs may reveal a pool of VA targets whose altered signaling contributes to anesthetic effects.


Anesthetics, Inhalation/pharmacology , Olfactory Mucosa/drug effects , Olfactory Receptor Neurons/drug effects , Receptors, G-Protein-Coupled/drug effects , Receptors, Odorant/drug effects , Animals , Dose-Response Relationship, Drug , Halothane/pharmacology , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Octanols/pharmacology , Odorants , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/metabolism , Receptors, Odorant/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Smell/drug effects , Smell/physiology
15.
Mol Pharmacol ; 61(5): 945-52, 2002 May.
Article En | MEDLINE | ID: mdl-11961111

The molecular pharmacology of inhalational anesthetics remains poorly understood. Despite accumulating evidence suggesting that neuronal membrane proteins are potential targets of inhaled anesthetics, most currently favored membrane protein targets lack any direct evidence for anesthetic binding. We report herein the location of the binding site for the inhaled anesthetic halothane at the amino acid residue level of resolution in the ligand binding cavity in a prototypical G protein-coupled receptor, bovine rhodopsin. Tryptophan fluorescence quenching and direct photoaffinity labeling with [(14)C]halothane suggested an interhelical location of halothane with a stoichiometry of 1 (halothane/rhodopsin molar ratio). Radiosequence analysis of [(14)C]halothane-labeled rhodopsin revealed that halothane contacts an amino acid residue (Trp265) lining the ligand binding cavity in the transmembrane core of the receptor. The predicted functional consequence, competition between halothane and the ligand retinal, was shown here by spectroscopy and is known to exist in vivo. These data suggest that competition with endogenous ligands may be a general mechanism of the action of halothane at this large family of signaling proteins.


Anesthetics, Inhalation/pharmacology , Halothane/pharmacology , Rhodopsin/metabolism , Animals , Binding, Competitive , Cattle , Ligands , Models, Molecular , Rhodopsin/drug effects , Rod Opsins/metabolism
...