Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(22): 29077-29086, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771667

RESUMEN

Gel polymer electrolytes (GPEs) represent a credible alternative to organic liquid electrolytes (LEs) for safer sodium metal batteries. As a compromise between solid polymer electrolytes and LEs, GPEs ensure a good ionic conductivity, improve the electrolyte/electrode interface, and prevent solvent leaks. Herein, a GPE based on acrylate-bifunctionalized polyethylene glycol chains mixed with an ether solvent (TEGDME) and a polyethylene glycol diacrylate (PEG600DA) in a 50/50 wt % ratio was prepared by ultraviolet photopolymerization. Sodium bis(fluorosulfonyl)imide salt (NaFSI) was added at different concentrations to study its interactions with the solvent and/or the cross-linked polymer. Infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and swelling ratio characterizations were combined to determine the physicochemical properties of the GPE. Complementary characterizations including electrochemical impedance spectroscopy, chronopotentiometry, and cyclic voltammetry allowed correlating the physicochemical properties of the GPE to its electrochemical performance. Then, improvements were obtained by careful combination of its components. The cross-linking agent allowed us to obtain a polymer matrix that traps the organic solvent and prevents leakage. Such a solvent inclusion reduces the rigidity of the membrane and lowers its viscosity, offering a room temperature ionic conductivity of 4.8 × 10-4 Ω-1 cm-1. The control of polymer's tortuosity leads to a stable cycling vs sodium metal over several hundred hours without increase of the polarization. Finally, optimization of the salt loading plays a major role in electrostatic cross-linking, leading to an improvement of the mechanical properties of the GPE without reducing its conductivity.

2.
Polymers (Basel) ; 14(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36501722

RESUMEN

New single-ion hybrid electrolytes have been synthetized via an original and simple synthetic approach combining Michael addition, epoxidation, and sol-gel polycondensation. We designed an organic PEO network as a matrix for the lithium transport, mechanically reinforced thanks to crosslinking inorganic (SiO1.5) sites, while highly delocalized anions based on lithium vinyl sulfonyl(trifluoromethane sulfonyl)imide (VSTFSILi) were grafted onto the inorganic sites to produce single-ion hybrid electrolytes (HySI). The influence of the electrolyte composition in terms of the inorganic/organic ratio and the grafted VSTFSILi content on the local structural organization, the thermal, mechanical, and ionic transport properties (ionic conductivity, transference number) are studied by a variety of techniques including SAXS, DSC, rheometry, and electrochemical impedance spectroscopy. SAXS measurements at 25 °C and 60 °C reveal that HySI electrolyte films display locally a spatial phase separation with domains composed of PEO rich phase and silica/VSTFSILi clusters. The size of these clusters increases with the silica and VSTFSILi content. A maximum ionic conductivity of 2.1 × 10-5 S·cm-1 at 80 °C has been obtained with HySI having an EO/Li ratio of 20. The Li+ ion transfer number of HySI electrolytes is high, as expected for a single-ion electrolyte, and comprises between 0.80 and 0.92.

3.
Anal Chem ; 93(35): 12041-12048, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431672

RESUMEN

Because of its speed, sensitivity, and ability to scrutinize individual species, mass spectrometry (MS) has become an essential tool in analytical strategies aimed at studying the degradation behavior of polyesters. MS analyses can be performed prior to the degradation event for structural characterization of initial substrates or after it has occurred to measure the decreasing size of products as a function of time. Here, we show that MS can also be usefully employed during the degradation process by online monitoring the chain solvolysis induced by reactive desorption electrospray ionization (DESI). Cleavage of ester bonds in random copolymers of lactic acid (LA) and glycolic acid (GA) was achieved by electrospraying methanol-containing NaOH onto the substrates. Experimental conditions were optimized to generate methanolysis products of high abundance so that mass spectra can be conveniently processed using Kendrick-based approaches. The same reactive-DESI performance was demonstrated for two sample preparations, solvent casting for soluble samples or pressed pellets for highly crystalline substrates, permitting to compare polymers with LA/GA ratios ranging from 100/0 to 5/95. Analysis of sample fractions collected by size exclusion chromatography showed that methanolysis occurs independently of the original chain size, so data recorded for poly(LA-co-GA) (PLAGA) copolymers with the average molecular weight ranging from 10 to 180 kDa could be safely compared. The average mass of methanolysis products was observed to decrease linearly (R2 = 0.9900) as the GA content increases in PLAGA substrates, consistent with the susceptibility of ester bonds toward solvolysis being higher in GA than in LA. Because DESI only explores the surface of solids, these data do not reflect bulk degradability of the copolymers but, instead, their relative degradability at the molecular level. Based on a "reactive-DESI degradability scale" such as that established here for PLAGA, the proposed method offers interesting perspectives to qualify intrinsic degradability of different polyesters and evaluate their erosion susceptibility or to determine the degradability of those polymers known to degrade via erosion only.


Asunto(s)
Glicoles , Espectrometría de Masa por Ionización de Electrospray , Peso Molecular , Poliésteres , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
4.
Soft Matter ; 17(27): 6552-6565, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34151921

RESUMEN

In this study, poly(ethylene oxide) monomethyl ether (MPEO) of molecular weight of 5000, 10 000, and 20 000 g mol-1 were grafted onto colloidal silica nanoparticles (NPs) of a 27.6 nm diameter using two distinct "grafting to" processes. The first method was based on the coupling reaction of epoxide-end capped MPEO with amine-functionalized silica NPs, while the second method was based on the condensation of triethoxysilane-terminated MPEO onto the unmodified silica NPs. The influence of PEO molecular weight, grafting process and grafting conditions (temperature, reactant concentration, reaction time) on the PEO grafting density was fully investigated. Thermogravimetric analysis (TGA) was used to determine the grafting density which ranged from 0.12 chains per nm2 using the first approach to 1.02 chains per nm2 when using the second approach. 29Si CP/MAS NMR characterization indirectly revealed that above a grafting density value of 0.3 PEO chains per nm2, a dendri-graft PEO network was built around the silica surface which was composed of PEO chains directly anchored to the silica surface and those grafted to silica NPs by intermediate of >CH-O-Si- bonds. The colloidal stability of the particles during different steps of the grafting process was characterized by small-angle X-ray scattering (SAXS). We have found that the colloidal systems are stable whatever the achieved grafting density due to the strong repulsions between the NPs, with the strength of repulsion increasing with the molecular weight of the grafted MPEO chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA