Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
J Biomol Struct Dyn ; : 1-16, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520326

Gamma-aminobutyric acid (GABA) signaling is the principal inhibitory pathway in the central nervous system. It is critical in neuronal cell proliferation and fate determination. Any aberration in GABA inhibition results in psychiatric and neurological diseases. Thus, modulating GABAergic neurotransmission has become the basis of drug therapy for psychiatric and several neurological diseases. Though GABA and muscimol are classical inhibitors of GABA receptors, the search for novel inhibitors continues unabated. In this study, the binding mechanism of GABA and muscimol was elucidated and applied in the search for small molecule GABAergic inhibitors using comprehensive computational techniques. It was revealed that a high-affinity binding of GABA and muscimol was mediated by a water molecule involving α1Thr129 and then stabilized by strong interactions including salt bridges with ß2Glu155 and α1Arg66 amidst hydrogen bonds, π-π stacking, and π -cation interactions with other residues. The binding of GABA and muscimol was also characterized by stability and deeper penetration into the hydrophobic core of the protein which resulted in conformational changes of the binding pocket and domain, by inducing correlated motions of the residues. Thermodynamics analysis showed GABA and muscimol exhibited total binding free energies of -19.85 ± 8.83 Kcal/mol and -26.55 ± 3.42 Kcal/mol, respectively. A pharmacophore model search, based on the energy contributions of implicating binding residues, resulted in the identification of ZINC68604167, ZINC19735138, ZINC04202466, ZINC00901626, and ZINC01532854 as potential GABA-mimetic compounds from metabolites and natural products libraries. This study has elucidated the binding mechanisms of GABA and muscimol and successfully applied in the identification of GABA-mimetic compounds.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38260948

The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 09.
Article En | MEDLINE | ID: mdl-37942697

To restore the integrity of the skin and subcutaneous tissue, the wound healing process involves a complex series of well-orchestrated biochemical and cellular events. Due to the existence of various active components, accessibility and few side effects, some plant extracts and their phytoconstituents are recognised as viable options for wound healing agents. To find possible inhibitors of diabetic wound healing, four main constituents of aloe vera were identified from the literature. TGF-ß1 and the compounds were studied using molecular docking to see how they interacted with the active site of target protein (PDB ID: 6B8Y). The pharmacokinetics investigation of the aloe emodin with the highest dock score complied with all the Lipinski's rule of five and pharmacokinetics criteria. Conformational change in the docked complex of Aloe emodin was investigated with the Amber simulation software, via a molecular dynamic (MD) simulation. The MD simulations of aloe emodin bound to TGF-ß1 showed the significant structural rotations and twists occurring from 0 to 200 ns. The estimate of the aloe emodin-TGF-ß1 complex's binding free energy has also been done using MM-PBSA/GBSA techniques. Additionally, aloe emodin has a wide range of enzymatic activities since their probability active (Pa) values is >0.700. 'Aloe emodin', an active extract of aloe vera, has been identified as the key chemical in the current investigation that can inhibit diabetic wound healing. Both in-vitro and in-vivo experiments will be used in a wet lab to confirm the current computational findings.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-24, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37909584

The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.

5.
In Silico Pharmacol ; 11(1): 36, 2023.
Article En | MEDLINE | ID: mdl-37994367

The finest sources of therapeutic agents are natural products, and usnic acid is a secondary metabolite derived from lichen that has a wide range of biological actions, including anti-viral, anti-cancer, anti-bacterial, and anti-diabetic (hyperglycemia). Based on the hyperglycemia activity of UA, this work seeks to identify new anti-hyperglycemia medicines by virtual screening of pyrazole derivatives of UA. Seven hit compounds (Compounds 1, 5, 6, 7, 17, 18 and 33), which finally go through docking-based screening to produce the lead molecule, were identified by the physicochemical attributes, drug-likeliness, and ADMET prediction. The docking score for the chosen compounds containing PPARγ agonists ranged from -7.6 to -9.2 kcal/mol, whereas the docking goal for compounds 5, 6, and 7 was -9.2 kcal/mol. Based on the binding energy and bound amino acid residues as well as compared to the reference compound, compound-6 considered as lead compound. Furthermore, the MD simulation of 3CS8-Compound-6 and 3CS8-Rosiglitazone complexes were performed to verify the stability of these complexes and the binding posture acquired in docking experiments. The compound-6 had strong pharmacological characteristics, bound to the PPARγ agonist active site, and was expected to reduce the activity of the receptor, according to the virtual screening results. It must be justified to conduct both in-vitro and in-vivo experiments to examine the efficacy of this compound. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00176-y.

6.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37676311

Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; 41(24): 14904-14913, 2023.
Article En | MEDLINE | ID: mdl-36995164

Due to the rising increase in infectious diseases brought on by bacteria and anti-bacterial drug resistance, antibacterial therapy has become difficult. The majority of first-line antibiotics are no longer effective against numerous germs, posing a new hazard to global human health in the 21st century. Through the drug-likeness screening, 184 usnic acid derivatives were selected from an in-house database of 340 usnic acid compounds. The pharmacokinetics (ADMET) prediction produced fifteen hit compounds, of which the lead molecule was subsequently obtained through a molecular docking investigation. The lead compounds, labelled compound-277 and compound-276, respectively, with the substantial binding affinity towards the enzymes were obtained through further docking simulation on the DNA gyrase and DNA topoisomerase proteins. Additionally, molecular dynamic (MD) simulation was performed for 300 ns on the lead compounds in order to confirm the stability of the docked complexes and the binding pose discovered during docking tests. Due to their intriguing pharmacological characteristics, these substances may be promising therapeutic candidate for anti-bacterial medication.Communicated by Ramaswamy H. Sarma.


DNA Gyrase , DNA Topoisomerase IV , Humans , DNA Gyrase/chemistry , DNA Topoisomerase IV/metabolism , Molecular Docking Simulation , Binding Sites , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Bacteria/metabolism , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
8.
J Mol Model ; 29(4): 122, 2023 Mar 30.
Article En | MEDLINE | ID: mdl-36995499

CONTEXT: [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS: In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS: Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.


Molecular Dynamics Simulation , Neoplasms , Molecular Docking Simulation , Catalytic Domain , Proteins , Methyltransferases
9.
Protein J ; 42(4): 263-275, 2023 08.
Article En | MEDLINE | ID: mdl-36959428

Muscle weakness as a secondary feature of attenuated neuronal input often leads to disability and sometimes death in patients with neurogenic neuromuscular diseases. These impaired muscle function has been observed in several diseases including amyotrophic lateral sclerosis, Charcot-Marie-Tooth, spinal muscular atrophy and Myasthenia gravis. This has spurred the search for small molecules which could activate fast skeletal muscle troponin complex as a means to increase muscle strength. Discovered small molecules have however been punctuated by off-target and side effects leading to the development of the second-generation small molecule, Reldesemtiv. In this study, we investigated the impact of Reldesemtiv binding to the fast skeletal troponin complex and the molecular determinants that condition the therapeutic prowess of Redesemtiv through computational techniques. It was revealed that Reldesemtiv binding possibly potentiates troponin C compacting characterized by reduced exposure to solvent molecules which could favor the slow release of calcium ions and the resultant sensitization of the subunit to calcium. These conformational changes were underscored by conventional and carbon hydrogen bonds, pi-alkyl, pi-sulfur and halogen interactions between Reldesemtiv the binding site residues. Arg113 (-3.96 kcal/mol), Met116 (-2.23 kcal/mol), Val114 (-1.28 kcal/mol) and Met121 (-0.63 kcal/mol) of the switch region of the inhibitory subunit were among the residues that contributed the most to the total free binding energy of Reldesemtiv highlighting their importance. These findings present useful insights which could lay the foundation for the development of fast skeletal muscle small molecule activators with high specificity and potency.


Calcium , Muscle, Skeletal , Humans , Calcium/metabolism , Muscle, Skeletal/metabolism , Pyrimidines/pharmacology , Troponin C/metabolism , Troponin C/pharmacology
10.
J Biomol Struct Dyn ; 41(21): 12186-12203, 2023.
Article En | MEDLINE | ID: mdl-36645141

Dengue fever is a significant public health concern throughout the world, causing an estimated 500,000 hospitalizations and 20,000 deaths each year, despite the lack of effective therapies. The DENV-2 RdRp has been identified as a potential target for the development of new and effective dengue therapies. This research's primary objective was to discover an anti-DENV inhibitor using in silico ligand- and structure-based approaches. To begin, a ligand-based pharmacophore model was developed, and 130 distinct natural products (NPs) were screened. Docking of the pharmacophore-matched compounds were performed to the active site of DENV-2 RdRp protease . Eleven compounds were identified as potential DENV-2 RdRp inhibitors based on docking energy and binding interactions. ADMET and drug-likeness were done to predict their pharmacologic, pharmacokinetic, and drug-likeproperties . Compounds ranked highest in terms of pharmacokinetics and drug-like appearances were then subjected to additional toxicity testing to determine the leading compound. Additionally, MD simulation of the lead compound was performed to confirm the docked complex's stability and the binding site determined by docking. As a result, the lead compound (compound-108) demonstrated an excellent match to the pharmacophore, a strong binding contact and affinity for the RdRp enzyme, favourable pharmacokinetics, and drug-like characteristics. In summary, the lead compound identified in this study could be a possible DENV-2 RdRp inhibitor that may be further studied on in vitro and in vivo models to develop as a drug candidate.Communicated by Ramaswamy H. Sarma.


Biological Products , Pharmacophore , Molecular Docking Simulation , Biological Products/pharmacology , Ligands , RNA-Dependent RNA Polymerase , Molecular Dynamics Simulation
11.
Curr Pharm Biotechnol ; 24(6): 814-824, 2023.
Article En | MEDLINE | ID: mdl-35718983

BACKGROUND: Bruton tyrosine kinase plays a key role in the survival, proliferation, activation, and differentiation of B-lineage cells and the signaling of other receptors. It is overexpressed and constitutively active in the pathogenesis of B cell malignancies and has therefore become a target for therapeutic intervention. Some success has been achieved in the discovery of small molecules, especially in the development of irreversible inhibitors. However, these inhibitors are punctuated by off target effects and have also become less effective in patients with mutations at Cys481. This motivated the search for inhibitors with improved efficacy and different binding modes. METHODS: In this study, we employed two new second generation inhibitors with different binding modes, Zanubrutinib and AS-1763, which are at various levels of clinical trials, to highlight the molecular determinants in the therapeutic inhibition of BTK through computational studies. RESULTS: This study revealed that Zanubrutinib and AS-1763 exhibited free total binding energies of -98.76 ± 4.63 kcal/mol and -51.81 ± 9.94 kcal/mol, respectively, with Zanubrutinib engaging in peculiar hydrogen bond interactions with the hinge residues Glu475 and Met477 including Asn484 and Tyr485 while AS-1763 engaged Lys430, Asp539, and Arg525. These residues contributed the most towards the free total binding energy with energies above -1.0 kcal/mol. The compounds further interacted differentially with other binding site residues through pi-alkyl, pi-cation, pianion, pi-pi-T-shaped, pi-sigma, pi-sulfur and pi-donor hydrogen bonds, and Van der Waals interactions. These interactions resulted in differential fluctuations of the residues with the consequential unfolding of the protein. CONCLUSION: Insights herein would be useful in guiding the discovery of more selective and potent small molecules.


Neoplasms , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Neoplasms/drug therapy , Cell Differentiation
12.
J Biomol Struct Dyn ; 41(11): 4890-4902, 2023 07.
Article En | MEDLINE | ID: mdl-35543250

The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRASG12C) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRASG12C. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (ΔGbind), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Piperazines , Pyridines/therapeutic use , Fungal Proteins/genetics , Mutation , Neoplasms/drug therapy
13.
Sci Rep ; 12(1): 17796, 2022 10 22.
Article En | MEDLINE | ID: mdl-36273239

The Kirsten rat sarcoma (KRAS) oncoprotein has been on drug hunters list for decades now. Initially considered undruggable, recent advances have successfully broken the jinx through covalent inhibition that exploits the mutated cys12 in the switch II binding pocket (KRASG12C). Though this approach has achieved some level of success, patients with mutations other than cys12 are still uncatered for. KRASG12D is the most frequent KRAS mutated oncoprotein. It is only until recently, MRTX1133 has been discovered as a potential inhibitor of KRASG12D. This study seeks to unravel the structural binding mechanism of MRTX1133 as well as identify potential drug leads of KRASG12D based on structural binding characteristics of MRTX1133. It was revealed that MRTX1133 binding stabilizes the binding site by increasing the hydrophobicity which resultantly induced positive correlated movements of switches I and II which could disrupt their interaction with effector and regulatory proteins. Furthermore, MRTX1133 interacted with critical residues; Asp69 (- 4.54 kcal/mol), His95 (- 3.65 kcal/mol), Met72 (- 2.27 kcal/mol), Thr58 (- 2.23 kcal/mol), Gln99 (- 2.03 kcal/mol), Arg68 (- 1.67 kcal/mol), Tyr96 (- 1.59 kcal/mol), Tyr64 (- 1.34 kcal/mol), Gly60 (- 1.25 kcal/mol), Asp12 (- 1.04 kcal/mol), and Val9 (- 1.03 kcal/mol) that contributed significantly to the total free binding energy of - 73.23 kcal/mol. Pharmacophore-based virtual screening based on the structural binding mechanisms of MRTX1133 identified ZINC78453217, ZINC70875226 and ZINC64890902 as potential KRASG12D inhibitors. Further, structural optimisations and biochemical testing of these compounds would assist in the discovery of effective KRASG12D inhibitors.


Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Mutation , Binding Sites , Neoplasms/genetics
14.
J Enzyme Inhib Med Chem ; 37(1): 1241-1256, 2022 Dec.
Article En | MEDLINE | ID: mdl-35484855

An efficient method for synthesising NMDAR co-agonist Sunifiram (DM235), in addition to Sunifram-carbamate and anthranilamide hybrids, has been developed in high yields via protecting group-free stepwise unsymmetric diacylation of piperazine using N-acylbenzotiazole. Compounds 3f, 3d, and 3i exhibited promising nootropic activity by enhancing acetylecholine (ACh) release in A549 cell line. Moreover, the carbamate hybrid 3f was found to exhibit higher in vitro potency than donepezil with IC50 = 18 ± 0.2 nM, 29.9 ± 0.15 nM for 3f and donepezil, respectively. 3f was also found to effectively inhibit AChE activity in rat brain (AChE = 1.266 ng/mL) compared to tacrine (AChE = 1.137 ng/ml). An assessment of the ADMET properties revealed that compounds 3f, 3d, and 3i are drug-like and can penetrate blood-brain barrier. Findings presented here showcase highly potential cholinergic agents, with expected partial agonist activity towards glycine binding pocket of NMDAR which could lead to development and optimisation of novel nootropic drugs.


Cholinesterase Inhibitors , Nootropic Agents , Acetylcholinesterase/metabolism , Animals , Carbamates/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Donepezil , Piperazines , Rats , Receptors, N-Methyl-D-Aspartate
15.
Comb Chem High Throughput Screen ; 25(12): 2059-2069, 2022.
Article En | MEDLINE | ID: mdl-35156567

BACKGROUND: The monotropic membrane protein monoamine oxidase B (MAO-B) has been shown to be a crucial drug target for the treatment of neurodegenerative diseases. The design of recent inhibitor therapeutic agents of MAO-B involves conjugation and modification of a chalcone scaffold comprising two aryl or heteroaryl rings connected via a short spacer unit with rotatable bonds. Supported by experimental data, these modifications often result in high potent inhibitor compounds. METHODS: In this study, we employ molecular dynamics simulations to unravel the impact of extended double bond conjugation in two novel compounds, F1 and MO10, toward the inhibition of the MAO-B protein. It was revealed that extended double bond conjugation induced a unidirectional orientation and motion of F1 and MO10, suggesting a stable binding pocket anchorage favouring high-affinity pocket interactions. RESULTS: Conformational analyses also revealed that the incorporated double bond extension impeded the motion of individual binding pocket residues, which subsequently disrupted the functionality of MAO-B. DISCUSSION: Real-time structural dynamics also revealed that the extended double bond conjugation mediated peculiar interactions with MAO-B binding pocket residues characterized by π-alkyl, π-π stacking, and π-sulphur interactions which buried both compounds into the hydrophobic core of MAO-B and ultimately induced higher binding affinities of both F1 and MO10. CONCLUSION: These insights present useful structural perspectives of the extended double bond conjugation associated with the experimentally reported enhanced inhibitory activity of F1 and MO10 against MAO-B.


Chalcone , Chalcones , Chalcone/chemistry , Chalcone/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Membrane Proteins , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Structure-Activity Relationship , Sulfur
16.
Cell Biochem Biophys ; 80(1): 11-21, 2022 Mar.
Article En | MEDLINE | ID: mdl-35040089

Despite the remarkable clinical activity of kinase inhibitors against anaplastic lymphoma kinase (ALK) and the closely related Ros1 and TRKA kinases, the emergence of resistance to these inhibitors often leads to relapse in most patients. Resistance is usually in the form of mutations and brain metastasis or inhibitors failing to penetrate the blood-brain barrier. The discovery of entrectinib has recently paved way for further exploration of kinase inhibitors that target ALK after it has reportedly demonstrated potency against ALK, Ros1, and TRKA kinases. However, the molecular mechanism surrounding its multi-targeting activity remains unresolved. As such, in this study, we investigate the pan-inhibitory mechanism of entrectinib towards ALK, Ros1, and TRKA, using in silico techniques. Findings show strong binding affinities of ALK = -40.92 kcal/mol, Ros1 = -36.60 kcal/mol, and TRKA = -45.99 kcal/mol for entrectinib towards ALK, Ros1, and TRKA, respectively. Pan-inhibitory binding of entrectinib is characterized by close interaction with peculiar gatekeeper residues on each tyrosine kinase. Entrectinib induced structural stability and rigidity in the backbone conformation of all three tyrosine kinases by showing a consistent pattern of structural alterations. These structural insights provided presents a baseline for the understanding of the pan-inhibitory activity of entrectinib. Establishing the cruciality of the interactions between the phenyl ring and gatekeeper residues could guide the structure-based design of novel tyrosine kinase inhibitors with improved therapeutic activities.


Lung Neoplasms , Protein-Tyrosine Kinases , Anaplastic Lymphoma Kinase , Benzamides , Humans , Indazoles , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/therapeutic use , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases , Tyrosine/therapeutic use
17.
J Biomol Struct Dyn ; 40(20): 10437-10453, 2022.
Article En | MEDLINE | ID: mdl-34182889

Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.


Antiviral Agents , Coronavirus 3C Proteases , Coronavirus Papain-Like Proteases , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors
18.
Cell Biochem Biophys ; 78(3): 291-299, 2020 Sep.
Article En | MEDLINE | ID: mdl-32592127

The predominance of Alzheimer's disease (AD) among the aged remains a global challenge. As such, the search for alternative and effective therapeutic options continuous unabated. Among the therapeutic targets explored over the years toward impeding the progression of AD is caspase-6 (Casp6), although selectively targeting Casp6 remains a challenge due to high homology with other members of the caspase family. Methyl 3-[(2,3-dihydro-1-benzofuran-2-yl formamido) methyl]-5-(furan-2-amido) benzoate (C13), a novel allosteric inhibitor, is reportedly shown to exhibit selective inhibition against mutant human Casp6 variants (E35K). However, structural and atomistic insights accounting for the reported inhibitory prowess of C13 remains unresolved. In this study, we seek to unravel the mechanistic selectivity of C13 coupled with the complementary effects of E35K single-nucleotide polymorphism (SNP) relative to Casp6 inhibition. Analyses of binding dynamics revealed that the variant Lysine-35 mediated consistent high-affinity interactions with C13 at the allosteric site, possibly forming the molecular basis of the selectivity of C13 as well as its high binding free energy as estimated. Analysis of residue interaction network around Glu35 and Lys35 revealed prominent residue network distortions in the mutant Casp6 conformation evidenced by a decrease in node degree, reduced number of edges and an increase short in path length relative to a more compact conformation in the wild system. The relatively higher binding free energy of C13 coupled with the stronger intermolecular interactions elicited in the mutant conformation further suggests that the mutation E35K probably favours the inhibitory activity of C13. Further analysis of atomistic changes showed increased C-α atom deviations consistent with structural disorientations in the mutant Casp6. Structural Insights provided could open up a novel paradigm of structure-based design of selective allosteric inhibition of Casp6 towards the treatment of neurodegenerative diseases.


Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Caspase 6/genetics , Caspase Inhibitors/pharmacology , Mutation , Polymorphism, Single Nucleotide , Allosteric Site , Caspase 6/chemistry , Drug Design , Humans , Imaging, Three-Dimensional , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
19.
J Mol Model ; 26(4): 68, 2020 Mar 04.
Article En | MEDLINE | ID: mdl-32130533

Pro-inflammatory activation of caspase-1 in the neurodegenerative pathway has been associated with age-dependent cognitive impairment and Alzheimer's disease (AD) in humans. A recent report highlighted 2,4-diaminopyrimidine ring as an essential fragment in the inhibition of human caspase-1. However, the role of the ring and its enzyme inhibitory mechanism is not thoroughly investigated at the molecular level. The purpose of this study is therefore in twofold: (1) to understand the enzyme binding mechanism of the 2,4-diaminopyrimidine ring and (2) to search for more potent caspase-1 inhibitors that contain the ring, using integrative per-residue energy decomposition (PRED) pharmacophore modeling. Ligand interaction profile of a reference compound revealed a peculiar hydrogen formation of the amino group of 2,4-diaminopyrimidine with active site residue Arg341, possibly forming the bases for its inhibitory prowess against caspase-1. A generated pharmacophore model for structure-based virtual screening identified compounds, ZINC724667, ZINC09908119, and ZINC09933770, as potential caspase-1 inhibitors that possessed desirable pharmacokinetic and physiochemical properties. Further analyses revealed active site residues, Arg179, Ser236, Cys285, Gln283, Ser339, and Arg341, as crucial to inhibitor binding by stabilizing and forming hydrogen bonds, hydrophobic, and pi-pi interactions with the 2,4-diaminopyrimidine rings. Common interaction patterns of the hits could have accounted for their selective and high-affinity ligand binding, which was characterized by notable disruptions in caspase-1 structural architecture. These compounds could further be explored as potential leads in the development of novel caspase-1 inhibitors.


Alzheimer Disease , Caspase 1/chemistry , Caspase Inhibitors/chemistry , Pyrimidines/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Caspase Inhibitors/therapeutic use , Humans , Pyrimidines/therapeutic use
20.
Chem Biodivers ; 17(3): e1900548, 2020 Mar.
Article En | MEDLINE | ID: mdl-32034875

Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) has been involved in several inflammation dependent diseases by mediating the chemotaxis of pro-inflammatory cells in response to allergy and other responses through PGD2 ligation. This CRTH2-PGD2 signaling pathway has become a target for treating allergic and type 2 inflammation dependent diseases, with many inhibitors developed to target the PGD2 binding pocket. One of such inhibitors is the ramatroban analog, CT-133, which exhibited therapeutic potency cigarette smoke-induced acute lung injury in patients. Nonetheless, the molecular mechanism and structural dynamics that accounts for its therapeutic prowess remain unclear. Employing computational tools, this study revealed that although the carboxylate moiety in CT-133 and the native agonist PGD2 aided in their stability within the CRTH2 binding pocket, the tetrahydrocarbazole group of CT-133 engaged in strong interactions with binding pocket residues which could have formed as the basis of the antagonistic advantage of CT-133. Tetrahydrocarbazole group interactions also enhanced the relative stability CT-133 within the binding pocket which consequently favored CT-133 binding affinity. CT-133 binding also induced an inactive or 'desensitized' state in the helix 8 of CRTH2 which could conversely favor the recruitment of arrestin. These revelations would aid in the speedy development of small molecule inhibitors of CRTH2 in the treatment of type 2 inflammation dependent diseases.


Boronic Acids/pharmacology , Inflammation/drug therapy , Lipids/chemistry , Molecular Dynamics Simulation , Prostaglandin D2/agonists , Boronic Acids/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Th2 Cells
...