Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Article En | MEDLINE | ID: mdl-37887926

This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.

2.
Polymers (Basel) ; 15(15)2023 Jul 26.
Article En | MEDLINE | ID: mdl-37571071

In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.

3.
Polymers (Basel) ; 14(12)2022 Jun 20.
Article En | MEDLINE | ID: mdl-35746083

This study presents the functionalization and characterization of graphene and electromagnetic interference (EMI) attenuation capacity in epoxy-nanocomposites. The modification of graphene involved both small molecules and polymers for compatibilization with epoxy resin components to provide EMI shielding. The TGA and RAMAN analyses confirmed the synthesis of graphene with a different layer thickness of the graphene sheets. Graphene samples with different layer thicknesses (monolayer, few layers, and multilayer) were selected and further employed for epoxy coating formulation. The obtained nanocomposites were characterized in terms of EMI shielding effectiveness, SEM, micro-CT, magnetic properties, and stress-strain resistance. The EMI shielding effectiveness results indicated that the unmodified graphene and hexamethylene diamine (HMDA) modified graphene displayed the best EMI shielding properties at 11 GHz. However, the epoxy nanocomposites based on HMDA modified graphene displayed better flexibility with an identical EMI shielding effectiveness compared to the unmodified graphene despite the formation of aggregates. The improved flexibility of the epoxy nanocomposites and EMI shielding characteristics of HMDA functionalized graphene offers a practical solution for textile coatings with microwave absorbing (MA) capacity.

...