Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Biotechnol Bioeng ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295202

RESUMEN

To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.

2.
Matrix Biol Plus ; 23: 100157, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139760

RESUMEN

The pericellular matrix (PCM) surrounding chondrocytes is essential for articular cartilage tissue engineering. As the current isolation methods to obtain chondrocytes with their PCM (chondrons) result in a heterogeneous mixture of chondrocytes and chondrons, regenerating the PCM using a tissue engineering approach could prove beneficial. In this study, we aimed to discern the behavior of articular chondrocytes (ACs) in regenerating the PCM in such an approach and whether this would also be true for articular cartilage-derived progenitor cells (ACPCs), as an alternative cell source. Bovine ACs and ACPCs were encapsulated in agarose microgels using droplet-based microfluidics. ACs were stimulated with TGF-ß1 and dexamethasone and ACPCs were sequentially stimulated with BMP-9 followed by TGF-ß1 and dexamethasone. After 0, 3, 5, and 10 days of culture, PCM components, type-VI collagen and perlecan, and ECM component, type-II collagen, were assessed using flow cytometry and fluorescence microscopy. Both ACs and ACPCs synthesized the PCM before the ECM. It was seen for the first time that synthesis of type-VI collagen always preceded perlecan. While the PCM synthesized by ACs resembled native chondrons after only 5 days of culture, ACPCs often made less well-structured PCMs. Both cell types showed variations between individual cells and donors. On one hand, this was more prominent in ACPCs, but also a subset of ACPCs showed superior PCM and ECM regeneration, suggesting that isolating these cells may potentially improve cartilage repair strategies.

3.
Vet Med Sci ; 10(5): e70003, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39177283

RESUMEN

A 12-year-old male domestic cat with multiple subcutaneous mast cell tumours (MCTs) presented with a 2-week history of pruritus and raw/bleeding skin from self-trauma at Kagoshima University Veterinary Teaching Hospital. Polymerase chain reaction (PCR) and histopathological analyses revealed intertumoral heterogeneity among tumour locations based on the mutation status of KIT. In addition, the expression pattern of KIT was characterized. After failed treatment with vinblastine (2.0-2.2 mg/m2, intravenous administration, two doses in total) or nimustine (25 mg/m2, intravenous administration, two doses in total), toceranib (2.2-2.6 mg/kg, orally administered, every other day) was administered to treat recurrent MCTs harbouring the KIT exon eight internal tandem duplication mutation, achieving a complete response. However, toceranib resistance developed 2 months after treatment initiation. Subsequent PCR analysis was conducted to identify the mutational status of KIT in each MCT and to detect the presence of secondary mutations associated with the acquisition of toceranib resistance. Secondary KIT mutations (c.998G>C and c.2383G>C), which were not initially detected in tumour cells at diagnosis, were identified after the development of resistance to toceranib. This indicates that the tumour cells in feline MCTs in the same case have diverse characteristics. Our findings encourage further investigation into the development of therapeutic strategies for feline MCTs, particularly focusing on the heterogeneous nature of KIT/KIT and overcoming acquired resistance to toceranib.


Asunto(s)
Enfermedades de los Gatos , Resistencia a Antineoplásicos , Indoles , Mutación , Proteínas Proto-Oncogénicas c-kit , Pirroles , Animales , Masculino , Gatos , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/genética , Indoles/farmacología , Indoles/uso terapéutico , Pirroles/farmacología , Pirroles/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Resistencia a Antineoplásicos/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
4.
Neuroradiology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039147

RESUMEN

PURPOSE: Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS: Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS: In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION: This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.

5.
J Exp Orthop ; 11(3): e12094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055395

RESUMEN

Purpose: Knee laxity can be experienced as knee instability which may lead to a limitation in the activity of patients. Current methods to determine knee instability are performed in a static setting, which does not always correlate with dynamic knee laxity during activities. Wearables might be able to measure knee laxity in a dynamic setting and could be of added value in the diagnosis and treatment of excessive knee laxity. Therefore, the aim of this systematic review is to provide an overview of the wearables that have been developed and their ability to measure knee laxity during dynamic activities. Methods: The PRISMA guidelines for systematic reviews were followed. A literature search was conducted in EMBASE, PubMed and Cochrane databases. Included studies assessed patients with knee instability using a non-invasive wearable sensor system during dynamic activity, with comparison to a reference system or healthy knees. Data extraction was performed by two authors via a predefined format. The risk of bias was assessed by The Dutch checklist for diagnostic tests. Results: A total of 4734 articles were identified. Thirteen studies were included in the review. The studies showed a great variety of patients, sensor systems, reference tests, outcome measures and performed activities. Nine of the included studies were able to measure differences in patients with knee instability, all including a tri-axial accelerometer. Differences were not measurable in all parameters and activities in these studies. Conclusions: Wearables, including at least a tri-axial accelerometer, seem promising for measuring dynamic knee laxity in the anterior-posterior and mediolateral direction. At this stage, it remains unclear if the measured outcomes completely reflect the knee instability that patients experience in daily life. Level of Evidence: Level III.

6.
Eur J Radiol ; 177: 111542, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38861906

RESUMEN

INTRODUCTION: Visualization of scoliosis typically requires ionizing radiation (radiography and CT) to visualize bony anatomy. MRI is often additionally performed to screen for neural axis abnormalities. We propose a 14-minutes radiation-free scoliosis-specific MRI protocol, which combines MRI and MRI-based synthetic CT images to visualize soft and osseous structures in one examination. We assess the ability of the protocol to visualize landmarks needed to detect 3D patho-anatomical changes, screen for neural axis abnormalities, and perform surgical planning and navigation. METHODS: 18 adult volunteers were scanned on 1.5 T MR-scanner using 3D T2-weighted and synthetic CT sequences. A predefined checklist of relevant landmarks was used for the parameter assessment by three readers. Parameters included Cobb angles, rotation, torsion, segmental height, area and centroids of Nucleus Pulposus and Intervertebral Disc. Precision, reliability and agreement between the readers measurements were evaluated. RESULTS: 91 % of Likert-based questions scored ≥ 4, indicating moderate to high confidence. Precision of 3D dot positioning was 1.0 mm. Precision of angle measurement was 0.6° (ICC 0.98). Precision of vertebral and IVD height measurements was 0.4 mm (ICC 0.99). Precision of area measurement for NP was 8 mm2 (ICC 0.55) and for IVD 18 mm2 (ICC 0.62) for IVD. Precision of centroid measurement for NP was 1.3 mm (ICC 0.88-0.92) and for IVD 1.1 mm (ICC 0.88-91). CONCLUSIONS: The proposed MRI protocol with synthetic CT reconstructions, has high precision, reliability and agreement between the readers for multiple scoliosis-specific measurements. It can be used to study scoliosis etiopathogenesis and to assess 3D spinal morphology.


Asunto(s)
Estudios de Factibilidad , Imagenología Tridimensional , Imagen por Resonancia Magnética , Escoliosis , Humanos , Escoliosis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Adulto , Reproducibilidad de los Resultados , Imagenología Tridimensional/métodos , Adolescente , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
7.
Egypt Heart J ; 76(1): 53, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696068

RESUMEN

BACKGROUND: Four-dimensional flow magnetic resonance imaging (MRI) enables blood flow visualization. The absence of left atrial vortex flow (LAVF) has been implicated in the development of thrombus formation and arrhythmias. However, the clinical relevance of this phenomenon in patients with congenital heart disease (CHD) remains unclear. This study aimed to unravel the relationship of LAVF with left atrial functions in patients with CHD. RESULTS: Twenty-five participants who underwent cardiac MRI examinations were included (8 postoperative patients with CHD aged 17-41 years and 17 volunteers aged 21-31 years). All participants were in sinus rhythm. Four-dimensional flow MRI (velocity encoding 100 cm/s) assessed the presence of LAVF, and its relationship with left atrial function determined by transthoracic echocardiography was explored. LAVF was detected in 16 patients. Upon classification of the participants based on the presence or absence of LAVF, 94% of participants in the LAVF group were volunteers, while 78% of those in the without LAVF group were postoperative patients. Participants without LAVF had a significantly lower left atrial ejection fraction (61% vs. 70%, p = 0.019), reservoir (32% vs. 47%, p = 0.006), and conduit (22% vs. 36%, p = 0.002) function than those with LAVF. CONCLUSIONS: LAVF occurred during the late phase of ventricular systole, and left atrial reservoir function may have contributed to its occurrence. Many postoperative patients with CHD experienced a loss of LAVF. LAVF may indicate early left atrial dysfunction resulting from left atrial remodeling.

8.
Chem Commun (Camb) ; 60(29): 3946-3949, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38497901

RESUMEN

We synthesized and evaluated Pam3CSK4-conjugated receptor binding domain (RBD)/deglycosylated RBD as potential anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidates. Our investigation revealed the critical importance of limiting the number of introduced Pam3CSK4 molecules to the RBD in order to preserve its antigenicity. We also confirmed the harmonious integration of the adjuvant-conjugation strategy with the glycan-shield removal strategy.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Receptor Toll-Like 1 , Anticuerpos Antivirales , COVID-19/prevención & control , Ligandos , Adyuvantes Inmunológicos/farmacología
9.
Heart Vessels ; 39(2): 117-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37740077

RESUMEN

Left atrial (LA) stiffness is one of the most important factors involved in LA remodeling. LA stiffness has rarely been studied postoperatively in patients with congenital heart diseases (CHDs). This study aimed to evaluate LA stiffness in CHD patients postoperatively. Seventy-five patients (CHDs, 67; controls, 8; age range, 10-41 years) who underwent cardiac catheterization at our institution were included in this study. From the pulmonary artery wedge pressure waveform obtained during cardiac catheterization, the pressure range between the v wave and x trough was determined, and this value was divided by the LA reservoir strain obtained by echocardiography to calculate LA stiffness, as previously reported. LA stiffness was significantly higher in postoperative CHD patients than in controls (0.28 ± 0.17 vs. 0.13 ± 0.03, p = 0.001). Nineteen of 52 (37%) patients in their teens, 8 of 11 (73%) patients in their 20 s, and 1 of 4 (25%) patients aged > 30 years had elevated LA stiffness values. In particular, all patients with an LA reservoir strain < 20% had elevated LA stiffness. In postoperative CHD patients, LA stiffness was frequently elevated from a young age. CHD patients with elevated LA stiffness should be cautious of possible LA dysfunction in the future.


Asunto(s)
Apéndice Atrial , Cardiopatías Congénitas , Adolescente , Humanos , Niño , Adulto Joven , Adulto , Atrios Cardíacos/diagnóstico por imagen , Ecocardiografía , Cateterismo Cardíaco , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/cirugía
10.
Brain Commun ; 5(6): fcad296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090279

RESUMEN

The clinical presentation of corticobasal degeneration is diverse, while the background pathology of corticobasal syndrome is also heterogeneous. Therefore, predicting the pathological background of corticobasal syndrome is extremely difficult. Herein, we investigated the clinical findings and course in patients with pathologically, genetically and biochemically verified corticobasal degeneration and corticobasal syndrome with background pathology to determine findings suggestive of background disorder. Thirty-two patients were identified as having corticobasal degeneration. The median intervals from the initial symptoms to the onset of key milestones were as follows: gait disturbance, 0.0 year; behavioural changes, 1.0 year; falls, 2.0 years; cognitive impairment, 2.0 years; speech impairment, 2.5 years; supranuclear gaze palsy, 3.0 years; urinary incontinence, 3.0 years; and dysphagia, 5.0 years. The median survival time was 7.0 years; 50% of corticobasal degeneration was diagnosed as corticobasal degeneration/corticobasal syndrome at the final presentation. Background pathologies of corticobasal syndrome (n = 48) included corticobasal degeneration (33.3%), progressive supranuclear palsy (29.2%) and Alzheimer's disease (12.5%). The common course of corticobasal syndrome was initial gait disturbance and early fall. In addition, corticobasal degeneration-corticobasal syndrome manifested behavioural change (2.5 years) and cognitive impairment (3.0 years), as the patient with progressive supranuclear palsy-corticobasal syndrome developed speech impairment (1.0 years) and supranuclear gaze palsy (6.0 years). The Alzheimer's disease-corticobasal syndrome patients showed cognitive impairment (1.0 years). The frequency of frozen gait at onset was higher in the corticobasal degeneration-corticobasal syndrome group than in the progressive supranuclear palsy-corticobasal syndrome group [P = 0.005, odds ratio (95% confidence interval): 31.67 (1.46-685.34)]. Dysarthria at presentation was higher in progressive supranuclear palsy-corticobasal syndrome than in corticobasal degeneration-corticobasal syndrome [P = 0.047, 6.75 (1.16-39.20)]. Pyramidal sign at presentation and personality change during the entire course were higher in Alzheimer's disease-corticobasal syndrome than in progressive supranuclear palsy-corticobasal syndrome [P = 0.011, 27.44 (1.25-601.61), and P = 0.013, 40.00 (1.98-807.14), respectively]. In corticobasal syndrome, decision tree analysis revealed that 'freezing at onset' or 'no dysarthria at presentation and age at onset under 66 years in the case without freezing at onset' predicted corticobasal degeneration pathology with a sensitivity of 81.3% and specificity of 84.4%. 'Dysarthria at presentation and age at onset over 61 years' suggested progressive supranuclear palsy pathology, and 'pyramidal sign at presentation and personality change during the entire course' implied Alzheimer's disease pathology. In conclusion, frozen gait at onset, dysarthria, personality change and pyramidal signs may be useful clinical signs for predicting background pathologies in corticobasal syndrome.

12.
Front Bioeng Biotechnol ; 11: 1244954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691908

RESUMEN

Anterior cruciate ligament (ACL) rupture is a very common knee joint injury. Torn ACLs are currently reconstructed using tendon autografts. However, half of the patients develop osteoarthritis (OA) within 10 to 14 years postoperatively. Proposedly, this is caused by altered knee kine(ma)tics originating from changes in graft mechanical properties during the in vivo remodeling response. Therefore, the main aim was to use subject-specific finite element knee models and investigate the influence of decreasing graft stiffness and/or increasing graft laxity on knee kine(ma)tics and cartilage loading. In this research, 4 subject-specific knee geometries were used, and the material properties of the ACL were altered to either match currently used grafts or mimic in vivo graft remodeling, i.e., decreasing graft stiffness and/or increasing graft laxity. The results confirm that the in vivo graft remodeling process increases the knee range of motion, up to >300 percent, and relocates the cartilage contact pressures, up to 4.3 mm. The effect of remodeling-induced graft mechanical properties on knee stability exceeded that of graft mechanical properties at the time of surgery. This indicates that altered mechanical properties of ACL grafts, caused by in vivo remodeling, can initiate the early onset of osteoarthritis, as observed in many patients clinically.

13.
Front Bioeng Biotechnol ; 11: 1244291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731762

RESUMEN

The generation of subject-specific finite element models of the spine is generally a time-consuming process based on computed tomography (CT) images, where scanning exposes subjects to harmful radiation. In this study, a method is presented for the automatic generation of spine finite element models using images from a single magnetic resonance (MR) sequence. The thoracic and lumbar spine of eight adult volunteers was imaged using a 3D multi-echo-gradient-echo sagittal MR sequence. A deep-learning method was used to generate synthetic CT images from the MR images. A pre-trained deep-learning network was used for the automatic segmentation of vertebrae from the synthetic CT images. Another deep-learning network was trained for the automatic segmentation of intervertebral discs from the MR images. The automatic segmentations were validated against manual segmentations for two subjects, one with scoliosis, and another with a spine implant. A template mesh of the spine was registered to the segmentations in three steps using a Bayesian coherent point drift algorithm. First, rigid registration was applied on the complete spine. Second, non-rigid registration was used for the individual discs and vertebrae. Third, the complete spine was non-rigidly registered to the individually registered discs and vertebrae. Comparison of the automatic and manual segmentations led to dice-scores of 0.93-0.96 for all vertebrae and discs. The lowest dice-score was in the disc at the height of the implant where artifacts led to under-segmentation. The mean distance between the morphed meshes and the segmentations was below 1 mm. In conclusion, the presented method can be used to automatically generate accurate subject-specific spine models.

14.
Clin Biomech (Bristol, Avon) ; 108: 106071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37597385

RESUMEN

BACKGROUND: Proximal junctional failure is a common complication attributed to the rigidity of long pedicle screw fixation constructs used for surgical correction of adult spinal deformity. Semi-rigid junctional fixation achieves a gradual transition in range of motion at the ends of spinal instrumentation, which could lead to reduced junctional stresses, and ultimately reduce the incidence of proximal junctional failure. This study investigates the biomechanical effect of different semi-rigid junctional fixation techniques in a T8-L3 finite element spine segment model. METHODS: First, degeneration of the intervertebral disc was successfully implemented by altering the height. Second, transverse process hooks, one- and two-level clamped tapes, and one- and two-level knotted tapes instrumented proximally to three-level pedicle screw fixation were validated against ex vivo range of motion data of a previous study. Finally, the posterior ligament complex forces and nucleus pulposus stresses were quantified. FINDINGS: Simulated range of motions demonstrated the fidelity of the general model and modelling of semi-rigid junctional fixation techniques. All semi-rigid junctional fixation techniques reduced the posterior ligament complex forces at the junctional zone compared to pedicle screw fixation. Transverse process hooks and knotted tapes reduced nucleus pulposus stresses, whereas clamped tapes increased nucleus pulposus stresses at the junctional zone. INTERPRETATION: The relationship between the range of motion transition and the reductions in posterior ligament complex and nucleus pulposus stresses was complex and dependent on the fixation techniques. Clinical trials are required to compare the effectiveness of semi-rigid junctional fixation techniques in terms of reducing proximal junctional failure incidence rates.


Asunto(s)
Tornillos Pediculares , Procedimientos de Cirugía Plástica , Adulto , Humanos , Análisis de Elementos Finitos , Movimiento (Física) , Rango del Movimiento Articular
15.
J Biomed Mater Res A ; 111(12): 1903-1915, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37539663

RESUMEN

Low back pain is the leading cause of disability worldwide, but current therapeutic interventions are palliative or surgical in nature. Loss of notochordal cells (NCs) and degradation of the healthy matrix in the nucleus pulposus (NP), the central tissue of intervertebral discs (IVDs), has been associated with onset of degenerative disc changes. Recently, we established a protocol for decellularization of notochordal cell derived matrix (NCM) and found that it can provide regenerative cues to nucleus pulposus cells of the IVD. Here, we combined the biologically regenerative properties of decellularized NCM with the mechanical tunability of a poly(ethylene glycol) hydrogel to additionally address biomechanics in the degenerate IVD. We further introduced a hydrolysable PEG-diurethane crosslinker for slow degradation of the gels in vivo. The resulting hydrogels were tunable over a broad range of stiffness's (0.2 to 4.5 kPa), matching that of NC-rich and -poor NP tissues, respectively. Gels formed within 30 min, giving ample time for handling, and remained shear-thinning post-polymerization. Gels also slowly released dNCM over 28 days as measured by GAG effusion. Viability of encapsulated bone marrow stromal cells after extrusion through a needle remained high. Although encapsulated NCs stayed viable over two weeks, their metabolic activity decreased, and their phenotype was lost in physiological medium conditions in vitro. Overall, the obtained gels hold promise for application in degenerated IVDs but require further tuning for combined use with NCs.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Hidrogeles/farmacología , Hidrogeles/metabolismo , Degeneración del Disco Intervertebral/terapia , Núcleo Pulposo/metabolismo , Células Cultivadas
16.
Front Immunol ; 14: 1173728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492571

RESUMEN

Immune checkpoint inhibitors highlight the importance of anticancer immunity. However, their clinical utility and safety are limited by the low response rates and adverse effects. We focused on progesterone (P4), a hormone produced by the placenta during pregnancy, because it has multiple biological activities related to anticancer and immune regulation effects. P4 has a reversible immune regulatory function distinct from that of the stress hormone cortisol, which may drive irreversible immune suppression that promotes T cell exhaustion and apoptosis in patients with cancer. Because the anticancer effect of P4 is induced at higher than physiological concentrations, we aimed to develop a new anticancer drug by encapsulating P4 in liposomes. In this study, we prepared liposome-encapsulated anti-programmed death ligand 1 (PD-L1) antibody-conjugated P4 (Lipo-anti-PD-L1-P4) and evaluated the effects on the growth of MDA-MB-231 cells, a PD-L1-expressing triple-negative breast cancer cell line, in vitro and in NOG-hIL-4-Tg mice transplanted with human peripheral blood mononuclear cells (humanized mice). Lipo-anti-PD-L1-P4 at physiological concentrations reduced T cell exhaustion and proliferation of MDA-MB-231 in vitro. Humanized mice bearing MDA-MB-231 cells expressing PD-L1 showed suppressed tumor growth and peripheral tissue inflammation. The proportion of B cells and CD4+ T cells decreased, whereas the proportion of CD8+ T cells increased in Lipo-anti-PD-L1-P4-administrated mice spleens and tumor-infiltrated lymphocytes. Our results suggested that Lipo-anti-PD-L1-P4 establishes a systemic anticancer immune environment with minimal toxicity. Thus, the use of P4 as an anticancer drug may represent a new strategy for cancer treatment.


Asunto(s)
Liposomas , Neoplasias , Humanos , Animales , Ratones , Progesterona , Leucocitos Mononucleares
17.
Cureus ; 15(6): e39845, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397670

RESUMEN

Background Central venous pressure (CVP) is one of the most important hemodynamic parameters in patients with congenital heart disease (CHD). In adults, it is well-known that liver fibrosis markers reflect CVP, but this is not well-understood in children. We investigated the liver fibrosis markers in pediatric CHD patients and their ability to predict CVP. Methods We studied 160 patients who underwent cardiac catheterization in our hospital between January 2017 and December 2020. The levels of the fibrotic markers, including type IV collagen 7s, procollagen type III peptide, and hyaluronic acid, were measured. Results Procollagen type III peptide was markedly elevated in infants younger than one year of age. From one to 15 years of age, it was slightly lower than in the infant group, with a peak at around 10 years of age. In the age group of 16 years and older, most of its values were generally high. Type IV collagen 7s and hyaluronic acid levels were high in infants, with no significant differences at later ages. Procollagen type III peptide and hyaluronic acid showed no significant correlation with CVP in any of the age groups, whereas type IV collagen 7s significantly correlated with CVP in the age group above one year old. Conclusions We found that elevated liver fibrosis markers, particularly type IV collagen 7s, correlated with central venous pressure in CHD patients older than one year. Measurement of liver fibrosis markers may allow the early detection of changes in CVP and liver function in patients with CHD.

18.
Adv Healthc Mater ; 12(27): e2301205, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37405830

RESUMEN

Human in vitro bone remodeling models, using osteoclast-osteoblast cocultures, can facilitate the investigation of human bone remodeling while reducing the need for animal experiments. Although current in vitro osteoclast-osteoblast cocultures have improved the understanding of bone remodeling, it is still unknown which culture conditions support both cell types. Therefore, in vitro bone remodeling models can benefit from a thorough evaluation of the impact of culture variables on bone turnover outcomes, with the aim to reach balanced osteoclast and osteoblast activity, mimicking healthy bone remodeling. Using a resolution III fractional factorial design, the main effects of commonly used culture variables on bone turnover markers in an in vitro human bone remodeling model are identified. This model is able to capture physiological quantitative resorption-formation coupling along all conditions. Culture conditions of two runs show promising results: conditions of one run can be used as a high bone turnover system and conditions of another run as a self-regulating system as the addition of osteoclastic and osteogenic differentiation factors is not required for remodeling. The results generated with this in vitro model allow for better translation between in vitro studies and in vivo studies, toward improved preclinical bone remodeling drug development.


Asunto(s)
Remodelación Ósea , Osteogénesis , Animales , Humanos , Remodelación Ósea/fisiología , Osteoclastos/metabolismo , Osteoblastos , Técnicas de Cocultivo , Diferenciación Celular
19.
JOR Spine ; 6(2): e1251, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37361332

RESUMEN

Background Context: Cervical disc replacement (CDR) aims to restore motion of the treated level to reduce the risk of adjacent segment disease (ASD) compared with spinal fusion. However, first-generation articulating devices are unable to mimic the complex deformation kinematics of a natural disc. Thus, a biomimetic artificial intervertebral CDR (bioAID), containing a hydroxyethylmethacrylate (HEMA)-sodium methacrylate (NaMA) hydrogel core representing the nucleus pulposus, an ultra-high-molecular-weight-polyethylene fiber jacket as annulus fibrosus, and titanium endplates with pins for primary mechanical fixation, was developed. Purpose: To assess the initial biomechanical effect of the bioAID on the kinematic behavior of the canine spine, an ex vivo biomechanical study in 6-degrees-of-freedom was performed. Study Design: A canine cadaveric biomechanical study. Methods: Six cadaveric canine specimens (C3-C6) were tested in flexion-extension (FE), lateral bending (LB) axial rotation (AR) using a spine tester in three conditions: intact, after C4-C5 disc replacement with bioAID, and after C4-C5 interbody fusion. A hybrid protocol was used where first the intact spines were subjected to a pure moment of ±1 Nm, whereafter the treated spines were subjected to the full range of motion (ROM) of the intact condition. 3D segmental motions at all levels were measured while recording the reaction torsion. Biomechanical parameters studied included ROM, neutral zone (NZ), and intradiscal pressure (IDP) at the adjacent cranial level (C3-C4). Results: The bioAID retained the sigmoid shape of the moment-rotation curves with a NZ similar to the intact condition in LB and FE. Additionally, the normalized ROMs at the bioAID-treated level were statistically equivalent to intact during FE and AR while slightly decreased in LB. At the two adjacent levels, ROMs showed similar values for the intact compared to the bioAID for FE and AR and an increase in LB. In contrast, levels adjacent to the fused segment showed an increased motion in FE and LB as compensation for the loss of motion at the treated level. The IDP at the adjacent C3-C4 level after implantation of bioAID was close to intact values. After fusion, increased IDP was found compared with intact but did not reach statistical significance. Conclusion: This study indicates that the bioAID can mimic the kinematic behavior of the replaced intervertebral disc and preserves that for the adjacent levels better than fusion. As a result, CDR using the novel bioAID is a promising alternative treatment for replacing severely degenerated intervertebral discs.

20.
J Am Chem Soc ; 145(29): 15838-15847, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37344812

RESUMEN

We report a promising cancer vaccine candidate comprising antigen/adjuvant-displaying enveloped viral replica as a novel vaccine platform. The artificial viral capsid, which consists of a self-assembled ß-annulus peptide conjugated with an HER2-derived antigenic CH401 peptide, was enveloped within a lipid bilayer containing the lipidic adjuvant α-GalCer. The use of an artificial viral capsid as a scaffold enabled precise control of its size to ∼100 nm, which is generally considered to be optimal for delivery to lymph nodes. The encapsulation of the anionically charged capsid by a cationic lipid bilayer dramatically improved its stability and converted its surface charge to cationic, enhancing its uptake by dendritic cells. The developed CH401/α-GalCer-displaying enveloped viral replica exhibited remarkable antibody-production activity. This study represents a pioneering example of precise vaccine design through bottom-up construction and opens new avenues for the development of effective vaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Membrana Dobles de Lípidos , Antígenos , Adyuvantes Inmunológicos , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA