Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Genet Syst ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38945898

RESUMEN

Response regulators (RRs), which are implicated in various developmental processes as well as environmental responses by acting as either positive or negative regulators, are crucial components of cytokinin signaling in plants. We characterized 36 RRs using in silico and computational analyses of publicly available data. A comprehensive analysis of OsRR family members was performed covering their physicochemical properties, chromosomal distribution, subcellular localization, phylogeny, gene structure, distribution of conserved motifs and domains, and gene duplication events. Gene Ontology analysis results indicate that 22 OsRR genes contribute mainly to the cytokinin-response and signal transduction. Predicted cis-elements in RRs promoter sequences related to phytohormones and abiotic stresses indicate that RRs are involved in hormonal and environmental responses as described in previous studies. MicroRNA (miRNA) target analysis showed that 148 miRNAs target 29 OsRR genes. In some cases, those RRs are targets of the same miRNA group, and may be controlled by common stimulus responses. Based on the analysis of publicly available gene expression data, OsRR4, OsRR6, OsRR9, OsRR10, OsRR22, OsPRR73, and OsPRR95 were found to be involved in response to abiotic stresses. Using quantitative reverse transcription polymerase chain reaction (qPCR) we confirmed that those RRs, namely OsRR4, OsRR6, OsRR9, OsRR10, OsRR22, and OsPRR73, are involved in the response to salinity, osmotic, alkaline and wounding stresses, and can potentially be used as models to understand molecular mechanisms underlying stress responsiveness.

2.
Plant Physiol ; 188(4): 1887-1899, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35026009

RESUMEN

Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.


Asunto(s)
Gentiana , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Gentiana/genética , Gentiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Biology (Basel) ; 11(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35053052

RESUMEN

Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32152081

RESUMEN

Delamanid (DLM), a nitro-dihydroimidazooxazole derivative currently approved for pulmonary multidrug-resistant tuberculosis (TB) therapy, is a prodrug activated by mycobacterial 7,8-didemethyl-8-hydroxy 5-deazaflavin electron transfer coenzyme (F420)-dependent nitroreductase (Ddn). Despite inhibiting the biosynthesis of a subclass of mycolic acids, the active DLM metabolite remained unknown. Comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM metabolites revealed covalent binding of reduced DLM with a nicotinamide ring of NAD derivatives (oxidized form) in DLM-treated Mycobacterium tuberculosis var. Bacille de Calmette et Guérin. Isoniazid-resistant mutations in the type II NADH dehydrogenase gene (ndh) showed a higher intracellular NADH/NAD ratio and cross-resistance to DLM, which were restored by complementation of the mutants with wild-type ndh Our data demonstrated for the first time the adduct formation of reduced DLM with NAD in mycobacterial cells and its importance in the action of DLM.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Nitroimidazoles/farmacología , Oxazoles/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/genética , Tuberculosis Pulmonar/tratamiento farmacológico , Cromatografía Liquida , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Espectrometría de Masas , Ácidos Micólicos/metabolismo , NAD/análisis , NADH Deshidrogenasa/genética , Oxidación-Reducción , Polimorfismo de Nucleótido Simple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
Methods Protoc ; 2(2)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242613

RESUMEN

Next-generation sequencing (NGS) is a revolutionary advancement allowing large-scale discovery of functional molecular markers that has many applications, including plant breeding. High-quality genomic DNA (gDNA) is a prerequisite for successful NGS library preparation and sequencing; however, few reliable protocols to obtain such plant gDNA exist. A previously reported nuclear pellet (NP) method enables extraction of high-yielding gDNA from fresh leaf tissue of maize (Zea mays L.), but the quality does not meet the stringent requirements of NGS. In this study, we optimized the NP method for whole-genome sequencing of rice (Oryza sativa L.) through the integration of simple purification steps. The optimized NP method relied on initial nucleus enrichment, cell lysis, extraction, and subsequent gDNA purification buffers. The purification steps used proteinase K, RNase A, phenol/chloroform/isoamyl alcohol (25:24:1), and chloroform/isoamyl alcohol (24:1) treatments for protein digestion and RNA, protein, and phenol removal, respectively. Our data suggest that this optimized NP method allowed extraction of consistently high-yielding and high-quality undegraded gDNA without contamination by protein and RNA. Moreover, the extracted gDNA fulfilled the quality metrics of NGS library preparation for the Illumina HiSeq X Ten platform by the TruSeq DNA PCR-Free Library Prep Kit (Illumina). We provide a reliable step-by-step guide to the extraction of high-quality gDNA from fresh leaf tissues of rice for molecular biologists with limited resources.

6.
Int J Mol Sci ; 20(10)2019 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-31130712

RESUMEN

Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from "Kaijin" into high-yielding "Yukinko-mai" (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named "YNU31-2-4", in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that "YNU31-2-4" plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. "YNU31-2-4" seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that "YNU31-2-4" seedlings avoided Na+ accumulation in shoots under salt stress. The "YNU31-2-4" plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. "YNU31-2-4" is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.


Asunto(s)
Oryza/genética , Tolerancia a la Sal , Cruzamientos Genéticos , Genes de Plantas , Oryza/fisiología , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
7.
Front Plant Sci ; 9: 266, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29541088

RESUMEN

Chloroplasts, which perform photosynthesis, are one of the most important organelles in green plants and algae. Chloroplasts maintain an independent genome that includes important genes encoding their photosynthetic machinery and various housekeeping functions. Owing to its non-recombinant nature, low mutation rates, and uniparental inheritance, the chloroplast genome (plastome) can give insights into plant evolution and ecology and in the development of biotechnological and breeding applications. However, efficient methods to obtain high-quality chloroplast DNA (cpDNA) are currently not available, impeding powerful sequencing and further functional genomics research. To investigate effects on rice chloroplast genome quality, we compared cpDNA extraction by three extraction protocols: liquid nitrogen coupled with sucrose density gradient centrifugation, high-salt buffer, and Percoll gradient centrifugation. The liquid nitrogen-sucrose gradient method gave a high yield of high-quality cpDNA with reliable purity. The cpDNA isolated by this technique was evaluated, resequenced, and assembled de novo to build a robust framework for genomic and genetic studies. Comparison of this high-purity cpDNA with total DNAs revealed the read coverage of the sequenced regions; next-generation sequencing data showed that the high-quality cpDNA eliminated noise derived from contamination by nuclear and mitochondrial DNA, which frequently occurs in total DNA. The assembly process produced highly accurate, long contigs. We summarize the extent to which this improved method of isolating cpDNA from rice can provide practical progress in overcoming challenges related to chloroplast genomes and in further exploring the development of new sequencing technologies.

8.
Plant Cell Physiol ; 57(8): 1610-28, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27335351

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1-NPP6 Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)-Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2-GFP and NPP6-GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER-Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs.


Asunto(s)
Glicómica , Oryza/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Secuencia de Aminoácidos , Animales , Brefeldino A/farmacología , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Genes Reporteros , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Familia de Multigenes , Oryza/genética , Oryza/ultraestructura , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Plastidios/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Pirofosfatasas/genética , Proteínas Recombinantes de Fusión , Alineación de Secuencia
9.
Rice (N Y) ; 9(1): 26, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27246013

RESUMEN

BACKGROUND: Global climate models predict an increase in global mean temperature and a higher frequency of intense heat spikes during this century. Cereals such as rice (Oryza sativa L.) are more susceptible to heat stress, mainly during the gametogenesis and flowering stages. During periods of high temperatures, grain filling often causes serious damage to the grain quality of rice and, therefore, yield losses. While the genes encoding enzymes involved in carbohydrate metabolism of chalky grains have been established, a significant knowledge gap exists in the proteomic and glycomic responses to warm temperatures in situ. Here, we studied the translucent and opaque characters of high temperature stressed chalky grains of 2009 and 2010 (ripening temperatures: 24.4 and 28.0 °C, respectively). RESULTS: Appearance of chalky grains of both years showed some resemblance, and the high-temperature stress of 2010 remarkably extended the chalking of grain. Scanning electron microscopic observation showed that round-shaped starch granules with numerous small pits were loosely packed in the opaque part of the chalky grains. Proteomic analyzes of rice chalky grains revealed deregulations in the expression of multiple proteins implicated in diverse metabolic and physiological functions, such as protein synthesis, redox homeostasis, lipid metabolism, and starch biosynthesis and degradation. The glycomic profiling has shown slight differences in chain-length distributions of starches in the grains of 2009-to-2010. However, no significant changes were observed in the chain-length distributions between the translucent and opaque parts of perfect and chalky grains in both years. The glucose and soluble starch contents in opaque parts were increased by the high-temperature stress of 2010, though those in perfect grains were not different regardless of the environmental changes of 2009-to-2010. CONCLUSION: Together with previous findings on the increased expression of α-amylases in the endosperm, these results suggested that unusual starch degradation rather than starch synthesis is involved in occurring of chalky grains of rice under the high-temperature stress during grain filling period.

10.
Neurodegener Dis ; 15(3): 140-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26138491

RESUMEN

One characteristic neuropathological feature of Alzheimer's disease (AD) is profound neuronal loss in the nucleus basalis of Meynert, the major source of cholinergic innervation of the cerebral cortex. Clinically, anticholinergic activity causes a decline in cognitive function and increases the risk of dementia, thus possibly enhancing AD pathologies and neurodegeneration. Until now there has been insufficient human neuropathological data to support this conclusion. Experimental studies using a tauopathy mouse model demonstrated anticholinergics enhanced tau pathology and neurodegeneration corresponding to central anticholinergic activity. Additionally, donepezil, a cholinesterase inhibitor, ameliorated tau pathology and neurodegeneration in the same mouse model. These results indicate the balance between cholinergic and anticholinergic activities might affect neurodegeneration. Importantly, neurodegeneration observed in the mouse model seemed to correspond to the distribution of microglial activation, and it was reported that neuroinflammation plays an important role in the pathomechanism of AD, while anticholinergic activity augments inflammatory responses. Moreover, some studies indicated ß-amyloid itself depletes cholinergic function similarly to anticholinergic activity. Thus, anticholinergic activity might initiate and/or accelerate AD pathology. Limited human data support the conclusion that anticholinergic activity enhances AD-related neuropathology and neurodegeneration. However, experimental data from a tauopathy mouse model indicated anticholinergic activity might enhance neurodegeneration with enhanced neuroinflammation including microglial activation.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Antagonistas Colinérgicos/uso terapéutico , Encefalitis/etiología , Acetilcolina/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteínas tau/metabolismo
11.
Plant Biotechnol J ; 13(9): 1251-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25586098

RESUMEN

Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat-stress-tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N-glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1-YFP showed MSD1-YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid-type SOD. To evaluate the involvement of MSD1 in heat-stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1-knock-down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up-regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.


Asunto(s)
Aparato de Golgi/enzimología , Respuesta al Choque Térmico/fisiología , Oryza/fisiología , Plastidios/enzimología , Superóxido Dismutasa/fisiología , Secuencia de Aminoácidos , Técnicas de Silenciamiento del Gen , Microscopía Confocal , Datos de Secuencia Molecular , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Semillas/crecimiento & desarrollo , Superóxido Dismutasa/genética
12.
Plant Cell Physiol ; 55(2): 320-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24092883

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase (NPP) is a widely distributed enzymatic activity occurring in both plants and mammals that catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides. Unlike mammalian NPPs, the physiological function of plant NPPs remains largely unknown. Using a complete rice NPP1-encoding cDNA as a probe, in this work we have screened a rice shoot cDNA library and obtained complete cDNAs corresponding to six NPP genes (NPP1-NPP6). As a first step to clarify the role of NPPs, recombinant NPP1, NPP2 and NPP6 were purified from transgenic rice cells constitutively expressing NPP1, NPP2 and NPP6, respectively, and their enzymatic properties were characterized. NPP1 and NPP6 exhibited hydrolytic activities toward ATP, UDP-glucose and the starch precursor molecule, ADP-glucose, whereas NPP2 did not recognize nucleotide sugars as substrates, but hydrolyzed UDP, ADP and adenosine 5'-phosphosulfate. To gain insight into the physiological function of rice NPP1, an npp1 knockout mutant was characterized. The ADP-glucose hydrolytic activities in shoots of npp1 rice seedlings were 8% of those of the wild type (WT), thus indicating that NPP1 is a major determinant of ADP-glucose hydrolytic activity in rice shoots. Importantly, when seedlings were cultured at 160 Pa CO2 under a 28°C/23°C (12 h light/12 h dark) regime, npp1 shoots and roots were larger than those of wild-type (WT) seedlings. Furthermore, the starch content in the npp1 shoots was higher than that of WT shoots. Growth and starch accumulation were also enhanced under an atmospheric CO2 concentration (40 Pa) when plants were cultured under a 33°C/28°C regime. The overall data strongly indicate that NPP1 exerts a negative effect on plant growth and starch accumulation in shoots, especially under high CO2 concentration and high temperature conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Oryza/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Almidón/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Secuencia de Bases , Dióxido de Carbono/farmacología , Células Cultivadas , ADN Complementario/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Oryza/fisiología , Hidrolasas Diéster Fosfóricas/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Pirofosfatasas/genética , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , Temperatura
13.
Plant Sci ; 193-194: 62-69, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22794919

RESUMEN

Rice endosperm starch is composed of 0-30% linear amylose, which is entirely synthesized by granule-bound starch synthase I (GBSSI: encoded by Waxy, Wx). The remainder consists of branched amylopectin and is elongated by multiple starch synthases (SS) including SSI, IIa and IIIa. Typical japonica rice lacks active SSIIa and contains a low expressing Wx(b) causing a low amylose content (ca. 20%). WAB2-3 (SS3a/Wx(a)) lines generated by the introduction of a dominant indica Wx(a) into a japonica waxy mutant (SS3a/wx) exhibit elevated GBSSI and amylose content (ca. 25%). The japonica ss3a mutant (ss3a/Wx(b)) shows a high amylose content (ca. 30%), decreased long chains of amylopectin and increased GBSSI levels. To investigate the functional relationship between the ss3a and Wx(a) genes, the ss3a/Wx(a) line was generated by crossing ss3a/Wx(b) with SS3a/Wx(a), and the starch properties of this line were examined. The results show that the apparent amylose content of the ss3a/Wx(a) line was increased (41.3%) compared to the parental lines. However, the GBSSI quantity did not increase compared to the SS3a/Wx(a) line. The amylopectin branch structures were similar to the ss3a/Wx(b) mutant. Therefore, Wx(a) and ss3a synergistically increase the apparent amylose content in rice endosperm, and the possible reasons for this increase are discussed.


Asunto(s)
Amilopectina/biosíntesis , Amilosa/biosíntesis , Endospermo/metabolismo , Glucógeno Sintasa/metabolismo , Oryza/enzimología , Oryza/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Plantas Modificadas Genéticamente/metabolismo , Almidón Sintasa/metabolismo
14.
Neurobiol Dis ; 45(1): 329-36, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21889983

RESUMEN

Anticholinergics, and drugs with anticholinergic properties, are widely and frequently prescribed, especially to the elderly. It is well known that these drugs decrease cognitive function and increase the risk of dementia. Although the mechanism of anticholinergic drug-induced cognitive impairment has been assumed to be functionally reduced acetylcholine (ACh) neurotransmission, some data have indicated that anticholinergics might enhance the pathology of Alzheimer's disease. In this study, we investigated the pathological effects of anticholinergics on neurodegeneration. We chronically administered two anticholinergics, trihexyphenidyl (TP) and propiverine (PP) (the latter with less central anticholinergic action), to neurodegenerative tauopathy model mice 2 to 10 months old. Furthermore, because the ACh nervous system regulates both central and peripheral inflammation, we administered TP or PP to PS19 mice in which we had artificially induced inflammation by lipopolysaccharide injection. Tau pathology, synaptic loss, and neurodegeneration in the hippocampal region, as well as tau insolubility and phosphorylation, were markedly increased in TP-treated mice and mildly increased in PP-treated mice. Furthermore, immunohistochemical analysis revealed microglial proliferation and activation. Moreover, anticholinergics increased interleukin-1ß expression in both the spleen and brain of the tauopathy model mice intraperitoneally injected with lipopolysaccharide to induce systemic inflammation. Interestingly, these alterations were more strongly observed in TP-treated mice than in PP-treated mice, consistent with the level of central anticholinergic action. Anticholinergic drugs not only impair cognitive function by decreased ACh neurotransmission, but also accelerate neurodegeneration by suppressing an ACh-dependent anti-inflammatory system. Anticholinergics should be less readily prescribed to reduce the risk of dementia.


Asunto(s)
Bencilatos/farmacología , Antagonistas Colinérgicos/farmacología , Hipocampo/efectos de los fármacos , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Tauopatías/patología , Trihexifenidilo/farmacología , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Ratones , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Tauopatías/metabolismo , Proteínas tau/metabolismo
15.
Plant Cell Physiol ; 49(6): 925-33, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18430767

RESUMEN

A rice Wx gene encoding a granule-bound starch synthase I (GBSSI) was introduced into the null-mutant waxy (wx) rice, and its effect on endosperm starches was examined. The apparent amylose content was increased from undetectable amounts for the non-transgenic wx cultivars to 21.6-22.2% of starch weight for the transgenic lines. The increase was in part due to a significant amount of extra-long unit chains (ELCs) of amylopectin (7.5-8.4% of amylopectin weight), that were absent in the non-transgenic wx cultivars. Thus, actual amylose content was calculated to be 14.9-16.0% for the transgenic lines. Only slight differences were found in chain-length distribution for the chains other than ELCs, indicating that the major effect of the Wx transgene on amylopectin structure was ELC formation. ELCs isolated from debranched amylopectin exhibited structures distinct from amylose. Structures of amylose from the transgenic lines were slightly different from those of cv. Labelle (Wx(a)) in terms of a higher degree of branching and size distribution. The amylose and ELC content of starches of the transgenic lines resulted in the elevation of pasting temperature, a 50% decrease in peak viscosity, a large decrease in breakdown and an increase in setback. As yet undetermined factors other than the GBSSI activity are thought to be involved in the control of formation and/or the amount of ELCs. Structural analysis of the Wx gene suggested that the presence of a tyrosine residue at position 224 of GBSSI correlates with the formation of large amounts of ELCs in cultivars carrying Wx(a).


Asunto(s)
Amilopectina/biosíntesis , Oryza/enzimología , Almidón Sintasa/metabolismo , Amilopectina/química , Amilosa/biosíntesis , Amilosa/química , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Plantas Modificadas Genéticamente , Almidón Sintasa/genética , Viscosidad
16.
Biosci Biotechnol Biochem ; 71(5): 1260-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17485861

RESUMEN

We found that appropriate treatment with a highly potent and long-lasting abscisic acid analog enhanced the tissue expansion of scutellum during early seedling development of rice, accompanied by increases of protein and starch accumulation in the tissue. A comparative display of the protein expression patterns in the abscisic acid analog-treated and non-treated tissues on two dimensional gel electrophoretogram indicated that approximately 30% of the scutellar proteins were induced by abscisic acid. The abscisic acid-induced proteins included sucrose metabolizing, glycolytic, and ATP-producing enzymes. Most of these enzyme proteins also increased during the seedling growth. In addition, the expression of some isoforms of UDP-glucose pyrophosphorylase, 3-phosphoglycerate kinase, and mitochondrial ATP synthase beta chain was stimulated in the scutellum, with suppressed expression of alpha-amylase. We concluded that abscisic acid directly and indirectly stimulates the expression of numerous proteins, including carbohydrate metabolic enzymes, in scutellar tissues.


Asunto(s)
Ácido Abscísico/farmacología , Oryza/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Proteoma/análisis , Plantones/efectos de los fármacos , Ácido Abscísico/análogos & derivados , Ácido Abscísico/análisis , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteómica/métodos , Estándares de Referencia , Plantones/metabolismo , Almidón/biosíntesis
17.
Mol Plant Pathol ; 8(5): 623-37, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20507526

RESUMEN

SUMMARY Three isoforms of nitrilase were cloned from turnip, Brassica rapa L., and their expression during clubroot development caused by Plasmodiophora brassicae was investigated. The isoforms were designated BrNIT-T1, BrNIT-T2 and BrNIT-T4 based on homology to known nitrilases. BrNIT-T1 and BrNIT-T2 have 80% homology to three nitrilases from Arabidopsis thaliana (AtNIT1, AtNIT2 and AtNIT3). BrNIT-T4 showed 90% homology to AtNIT4. To confirm their enzyme activity, the recombinant proteins were expressed in Escherichia coli. The recombinant BrNIT-T1 and BrNIT-T2 but not BrNIT-T4 converted indole-3-acetonitrile to indole-3-acetic acid, an endogenous plant auxin, although kinetic analysis showed that indole-3-acetonitrile is a poor substrate compared with various aliphatic and aromatic nitriles. By contrast, the recombinant BrNIT-T4 specifically converted beta-cyano-l-alanine to aspartic acid and asparagine and these findings agree with the idea that it is involved in the cyanide detoxification pathway. Real-time PCR analysis clearly showed that these isoforms were differentially expressed during clubroot development. BrNIT-T1 transcripts were very low in non-infected roots but were enhanced up to 100-fold in infected roots exhibiting club growth. By contrast, BrNIT-T2 transcripts remained at a very low level during clubroot formation. All these results clearly indicate the specific involvement of BrNIT-T1 in clubroot formation. The BrNIT-T4 transcripts were substantially reduced in the clubroot-growing phase, but thereafter they increased rapidly to a level found in non-infected roots as the clubroot growth reached a plateau. These findings suggest the specific involvement of BrNIT-T4 in clubroot maturation. In fully developed clubs, the BrNIT-T1 and BrNIT-T2 transcripts also increased. Free indole-3-acetic acid (IAA) content increased in the early and the latest phase of infected roots compared with non-infected roots, but decreased substantially at the middle phase. Thus, free IAA may play a role in the initiation and maturation of clubroot. Total IAA content was significantly higher in infected roots than in non-infected roots throughout clubroot development and IAA conjugation/conjugate hydrolysis system as well as BrNIT-Ts appear to be involved in clubroot development.

18.
Plant Cell Physiol ; 46(6): 858-69, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15821023

RESUMEN

To determine the role of alpha-amylase isoform I-1 in the degradation of starch in rice leaf chloroplasts, we generated a series of transgenic rice plants with suppressed expression or overexpression of alpha-amylase I-1. In the lines with suppressed expression of alpha-amylase I-1 at both the mRNA and protein levels, seed germination and seedling growth were markedly delayed in comparison with those in the wild-type plants. However, the growth retardation was overcome by supplementation of sugars. Interestingly, a significant increase of starch accumulation in the young leaf tissues was observed under a sugar-supplemented condition. In contrast, the starch content of leaves was reduced in the plants overexpressing alpha-amylase I-1. In immunocytochemical analysis with specific anti-alpha-amylase I-1 antiserum, immuno-gold particles deposited in the chloroplasts and extracellular space in young leaf cells. We further examined the expression and targeting of alpha-amylase I-1 fused with the green fluorescent protein in re-differentiated green cells, and showed that the fluorescence of the expressed fusion protein co-localized with the chlorophyll autofluorescence in the transgenic cells. In addition, mature protein species of alpha-amylase I-1 bearing an oligosaccharide side chain were detected in the isolated chloroplasts. Based on these results, we concluded that alpha-amylase I-1 targets the chloroplasts through the endoplasmic reticulum-Golgi system and plays a significant role in the starch degradation in rice leaves.


Asunto(s)
Oryza/metabolismo , Almidón/metabolismo , alfa-Amilasas/metabolismo , Cloroplastos/metabolismo , Espacio Extracelular/enzimología , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopía Inmunoelectrónica , Modelos Biológicos , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente , Plastidios/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , alfa-Amilasas/genética
19.
Plant Physiol Biochem ; 42(6): 477-84, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15246060

RESUMEN

Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Giberelinas/metabolismo , Oryza/enzimología , Procesamiento Postranscripcional del ARN/genética , alfa-Amilasas/genética , Secuencia de Bases , Northern Blotting , Cartilla de ADN , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Germinación , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Biosci Biotechnol Biochem ; 68(1): 112-8, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14745172

RESUMEN

We isolated and identified 10 alpha-amylase isoforms by using beta-cyclodextrin Sepharose affinity column chromatography and two-dimensional polyacrylamide gel electrophoresis from germinating rice (Oryza sativa L.) seeds. Immunoblots with anti-alpha-amylase I-1 and II-4 antibodies indicated that 8 isoforms in 10 are distinguishable from alpha-amylase I-1 and II-4. Peptide mass fingerprinting analysis showed that there exist novel isoforms encoded by RAmy3B and RAmy3C genes. The optimum temperature for enzyme reaction of the RAmy3B and RAmy3C coding isoforms resembled that of alpha-amylase isoform II-4 (RAmy3D). Furthermore, complex protein polymorphism resulted from a single alpha-amylase gene was found to occur not only in RAmy3D, but also in RAmy3B.


Asunto(s)
Oryza/enzimología , Proteómica/métodos , alfa-Amilasas/genética , Secuencia de Aminoácidos , Cromatografía de Afinidad/métodos , Genes de Plantas , Germinación , Isoenzimas , Datos de Secuencia Molecular , Oryza/genética , Polimorfismo Genético , Semillas/enzimología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Temperatura , alfa-Amilasas/aislamiento & purificación , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA