Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242117

RESUMEN

Germanium-tin nanoparticles are promising materials for near- and mid-infrared photonics thanks to their tunable optical properties and compatibility with silicon technology. This work proposes modifying the spark discharge method to produce Ge/Sn aerosol nanoparticles during the simultaneous erosion of germanium and tin electrodes. Since tin and germanium have a significant difference in the potential for electrical erosion, an electrical circuit damped for one period was developed to ensure the synthesis of Ge/Sn nanoparticles consisting of independent germanium and tin crystals of different sizes, with the ratio of the atomic fraction of tin to germanium varying from 0.08 ± 0.03 to 0.24 ± 0.07. We investigated the elemental and phase composition, size, morphology, and Raman and absorbance spectra of the nanoparticles synthesized under different inter-electrode gap voltages and the presence of additional thermal treatment directly in a gas flow at 750 °C. The research shows that the in-flow thermal treatment of aerosol-agglomerated nanoparticles produced special individual bicrystalline Janus Ge/Sn nanoparticles with an average size of 27 nm and a decreasing absorption function with a changing slope at 700 nm.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432340

RESUMEN

Aluminum nanoparticles attract scientific interest as a promising low-cost material with strong plasmon resonance in the ultraviolet region, which can be used in various fields of photonics. In this paper, for the first time, ultraviolet luminescence of zinc oxide nanoparticles in colloid solutions and nanostructure films in the presence of plasmonic aluminum nanoparticles 60 nm in size with a metal core and an aluminum oxide shell were studied. Mixture colloids of ZnO and Al nanoparticles in isopropyl alcohol solution with concentrations from 0.022 to 0.44 g/L and 0.057 to 0.00285 g/L, correspondingly, were investigated. The enhancement of up to 300% of ZnO emission at 377 nm in colloids mixtures with metal nanoparticles due to formation of Al-ZnO complex agglomerates was achieved. Plasmon nanostructures with different configurations of layers, such as Al on the surface of ZnO, ZnO on Al, sandwich-like structure and samples prepared from a colloidal mixture of ZnO and Al nanoparticles, were fabricated by microplotter printing. We demonstrated that photoluminescence can be boosted 2.4-fold in nanostructures prepared from a colloidal mixture of ZnO and Al nanoparticles, whereas the sandwich-like structure gave only 1.1 times the amplification of luminescence. Calculated theoretical models of photoluminescence enhancement of ideal and weak emitters near aluminum nanoparticles of different sizes showed comparable results with the obtained experimental data.

3.
Polymers (Basel) ; 13(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809782

RESUMEN

Printing nano-ink with platinum nanoparticles to generate conductive microstructures for electronics on different types of substrates has gained increasing interest in recent years. To solve the problem of the low conductivity of platinum (Pt) nano-ink, we synthesized chemically pure Pt nanoparticles with sizes of 18.2 ± 9.0 nm by spark discharge method. A low toxic solvent, ethylene glycol with water, was used to ensure the aggregation stability of Pt nanoparticles. Polyvinylpyrrolidone was used as an adhesive additive and binder in the nano-ink. Narrow and conductive Pt lines were generated by aerosol jet printing technology. The resistivity of the Pt lines sintered at 750 °C on alumina substrate was found to exceed the bulk Pt by about 13%. Moreover, the Pt film fabricated on polymer substrates has demonstrated excellent mechanical flexibility in terms of twisting tests.

4.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477440

RESUMEN

A cost-effective, scalable and versatile method of preparing nano-ink without hazardous chemical precursors is a prerequisite for widespread adoption of printed electronics. Precursor-free synthesis by spark discharge is promising for this purpose. The synthesis of platinum nanoparticles (PtNPs) using a spark discharge under Ar, N2, and air has been investigated to prepare highly conductive nano-ink. The size, chemical composition, and mass production rate of PtNPs significantly depended on the carrier gas. Pure metallic PtNPs with sizes of 5.5 ± 1.8 and 7.1 ± 2.4 nm were formed under Ar and N2, respectively. PtNPs with sizes of 18.2 ± 9.0 nm produced using air consisted of amorphous oxide PtO and metallic Pt. The mass production rates of PtNPs were 53 ± 6, 366 ± 59, and 490 ± 36 mg/h using a spark discharge under Ar, N2, and air, respectively. It was found that the energy dissipated in the spark gap is not a significant parameter that determines the mass production rate. Stable Pt nano-ink (25 wt.%) was prepared only on the basis of PtNPs synthesized under air. Narrow (about 30 µm) and conductive Pt lines were formed by the aerosol jet printing with prepared nano-ink. The resistivity of the Pt lines sintered at 750 °C was (1.2 ± 0.1)·10-7 Ω·m, which is about 1.1 times higher than that of bulk Pt.

5.
Molecules ; 25(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899530

RESUMEN

The effectiveness of carbon nanotubes (CNT) deagglomeration by rapid expansion of supercritical suspensions (RESS) in nitrogen and carbon dioxide fluids was studied in this work. Two different mechanisms of deagglomeration were proposed for these two fluids at various temperature and pressure conditions. Ultrasound attenuation spectroscopy was applied as an express method of determining median diameter and aspect ratio of CNTs. At least twofold reduction of the diameter was shown for CNT bundles processed by RESS technique. Aspect ratio of processed CNTs, calculated from acoustic attenuation spectra, increased to 340. These results were in a good agreement with atomic force microscopy data.


Asunto(s)
Nanotubos de Carbono/química , Suspensiones/química , Microscopía de Fuerza Atómica , Nanotubos de Carbono/ultraestructura , Espectrometría Raman , Ultrasonido
7.
Sensors (Basel) ; 18(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096818

RESUMEN

The application of gas sensors in breath analysis is an important trend in the early diagnostics of different diseases including lung cancer, ulcers, and enteric infection. However, traditional methods of synthesis of metal oxide gas-sensing materials for semiconductor sensors based on wet sol-gel processes give relatively high sensitivity of the gas sensor to changing humidity. The sol-gel process leading to the formation of superficial hydroxyl groups on oxide particles is responsible for the strong response of the sensing material to this factor. In our work, we investigated the possibility to synthesize metal oxide materials with reduced sensitivity to water vapors. Dry synthesis of SnO2 nanoparticles was implemented in gas phase by spark discharge, enabling the reduction of the hydroxyl concentration on the surface and allowing the production of tin dioxide powder with specific surface area of about 40 m²/g after annealing at 610 °C. The drop in sensor resistance does not exceed 20% when air humidity increases from 40 to 100%, whereas the response to 100 ppm of hydrogen is a factor of 8 with very short response time of about 1 s. The sensor response was tested in mixtures of air with hydrogen, which is the marker of enteric infections and the marker of early stage fire, and in a mixture of air with lactate (marker of stomach cancer) and ammonia gas (marker of Helicobacter pylori, responsible for stomach ulcers).


Asunto(s)
Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Gases/análisis , Gases/química , Humedad , Nanopartículas del Metal/química , Nanomedicina/métodos , Óxidos/química , Aire/análisis , Amoníaco/análisis , Incendios , Humanos , Hidrógeno/análisis , Ácido Láctico/análisis , Neoplasias Gástricas/diagnóstico , Úlcera Gástrica/diagnóstico
8.
MethodsX ; 4: 305-309, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29159136

RESUMEN

A method for determining the critical values of the flow speed and the flow constriction degree characteristic of the alignment of cylindrical nano-objects in a flowing suspension is proposed. Previously, the alignment process of cylindrical nano-objects in suspensions was investigated by using birefringence of the polarized light and the small-angle X-ray scattering. While both methods are suitable for measuring the alignment degree of cylindrical nano-objects in suspensions diluted down to low concentrations, they are restricted for the application to undiluted concentrated suspensions because of non-transparency and multiple scattering of X-rays. In addition, the use of the second method requires an expensive synchrotron equipment. We present a simple and faster method based on the direct ultrasound attenuation measurements of longitudinal viscosity of a suspension containing cylindrical nano-objects, which decreases monotonically, approaching its asymptotic value with increase in the flow speed and the flow constriction degree. The principle and advantages of the proposed method are as follows: •The cylindrical nano-objects align along an accelerated flow at overcritical values of the flow speed and the constriction degree.•The critical values correspond to the state of a suspension possessing viscosity close to the asymptotic value.•The method is applicable to undiluted concentrated suspensions, including opaque ones.

9.
MethodsX ; 3: 19-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27408825

RESUMEN

A method for measurement of dimensions of platy particles of exfoliating, or delaminating, materials, such as clays, in aqueous suspensions in situ is proposed. Equivalent spherical diameter (esd), measured by many common methods, depends more on the major (lateral) dimension of a particle, while it is less sensitive to changes of the particle thickness. Addition of the second method, results of which are a function of the particle diameter and thickness too, would provide more accurate determination of the particle dimensions. Previously, a combination of low-temperature nitrogen adsorption (BET) and dynamic light scattering (DLS) methods for determination of specific surface area of dry powder of platy particles and their esd in suspension was suggested. While such combination was suitable for measurement of particle size for non-exfoliating materials, it gave incorrect results for exfoliating materials, which dramatically change their surface area when dispersed in liquid. We modify this method by substituting BET method with NMR relaxometry, which allows to measure wetted surface area of the dispersed material directly in suspension. The advantages of this method are:•More accurate determination of diameter and thickness of platy, particularly exfoliating, materials directly in suspension.•Possibility of routine monitoring of particle size changes during the dispersing process.

10.
Biochemistry ; 45(14): 4481-90, 2006 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-16584184

RESUMEN

Distributions of phosphate backbone-produced electrostatic potentials around several tRNAs were calculated by solving the nonlinear Poisson-Boltzmann equation. The tRNAs were either free or bound to the proteins involved in translation: aminoacyl-tRNA and elongation factor EF-Tu. We identified several regions of strong negative potential related to typical structural patterns of tRNA and invariant throughout the tRNAs. The patterns are conserved upon binding of tRNAs to the synthetase and the EF-Tu. Variation of tRNA charge in our theoretical calculations of electrostatic potential-mediated pK shifts of pH-dependent labels attached to tRNA, compared to experimentally observed pK shifts for those labels, shows that the total charge of tRNA is large, within the interval of -40 to -70 proton charges. The electrostatic field of tRNA is sufficient to cause ionization of histidine residues of ARSase, causing additional free energy of ARSase-tRNA interaction of at least several kcal/mol. This may discriminate proteins with respect to the particular tRNA at large distances. Two types of tRNA-protein electrostatic recognition mechanisms are discussed. One, more specific, involves charges induced on protein by the large electrostatic potential of tRNA, while the other, less specific, does not involve induced charges.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia/metabolismo , Modelos Moleculares , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...