Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Inorg Chem ; 63(11): 5199-5207, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38447157

New nitrosonium manganese(II) nitrate, (NO)Mn6(NO3)13, has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr. P63/m). Mn2+ ions are assembled into tubes along axis c with both NO3- filling and coating. The nitrosonium cation is located in the framework cavity and is disordered by a 3-fold axis. At the temperature TS1 = 190 K, a structural phase transition related to the libration of the intertube NO3 group and a small variation of Mn polyhedron is observed. Moreover, the anomalies in physical properties of (NO)Mn6(NO3)13 allow suggesting that ordering of NO+ units occurs at low temperatures. The antiferromagnetic ordering in this compound is preceded by the formation of a short-range correlation regime at about 25 K and takes place in two steps at TN1 = 12.0 K and TN2 = 8.4 K.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 6): 495-509, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37934491

The crystal structure of potassium guaninate hydrate, K+·C5H4N5O-·H2O, was studied in the pressure range of 1 atm to 7.3 GPa by single-crystal diffraction using synchrotron radiation and a laboratory X-ray diffraction source. Structural strain was compared to that of the same salt hydrate on cooling, and in 2Na+·C5H3N5O2-·7H2O under hydrostatic compression and on cooling. A polymorphic transition into a new, incommensurately modulated, phase was observed at ∼4-5 GPa. The transition was reversible with a hysteresis: the satellite reflections disappeared on decompression to ∼1.4 GPa.

3.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Article En | MEDLINE | ID: mdl-37626451

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

4.
Adv Mater ; 34(42): e2204038, 2022 Oct.
Article En | MEDLINE | ID: mdl-35829689

Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10 , encounters a serious complication because of the large upper critical magnetic field HC2 (0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10 : each at% of Nd causes a decrease in TC by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2 (T) âˆ |T - TC |, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.

5.
Inorg Chem ; 61(12): 4879-4886, 2022 Mar 28.
Article En | MEDLINE | ID: mdl-35298134

We synthesized single crystals of Na0.55Ni6(OH)3(H0.61PO4)4 (I) and polycrystals of (Na, Ni)0.64Ni5.68(OH)3(H0.67PO4)4 (II) with ellenbergerite-like structures using the hydrothermal method. The phases crystallize in the hexagonal space group P63mc with the following unit cell parameters: a = 12.5342(1) Å, c = 4.9470(1) Å, and V = 673.08(2) Å3 for I; a = 12.4708(2) Å, c = 4.9435(2) Å, and V = 665.82(2) Å3 for II; and Z = 2. Their crystal structures are based on a 3D framework built from NiO6 octahedra and PO4 tetrahedra. The difference between I and II lies in the way the structural channels are filled along the [001] direction. These channels accommodate segments of Na- and (Na, Ni)-centered chains of face-sharing octahedra in the structures I and II, respectively. The magnetic susceptibility χ and the specific heat Cp evidence pronounced low-dimensional magnetic behavior at elevated temperatures and the formation of the weakly ferromagnetic long-range order at TNI = 61 K and TNII = 63 K. Analysis of the χ(T) data within both chain and dimer spin models allows the estimation of the leading exchange interaction parameters in the compounds under study.

6.
Inorg Chem ; 60(13): 9461-9470, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-34128644

A novel modification of the KCoPO4, δ-phase has been prepared by hydrothermal synthesis at 553 K. The compound crystallizes in the orthorhombic system with the unit-cell parameters a = 8.5031(8), b = 10.2830(5), c = 54.170(4) Å. The crystal structure was determined based on synchrotron low-temperature single-crystal X-ray diffraction data obtained from an inversion twin in the space group P212121 and refined to R = 0.077 for 5156 reflections with I > 3σ(I). The δ-KCoPO4 possesses a new structure type which is based on a framework built from sharing vertices Co- and P-centered tetrahedra. The {CoPO4-}∞ construction of tetrahedra may be described as assembled from networks formed by two topologically diverse six-membered rings of tetrahedra stacked together through vertex-bridging contacts along the a axis. The ratio of the (UUUDDD) and (UUDUDD) rings, where (U) and (D) denote the orientation of the tetrahedra in the six-membered rings up and down relative to the plane grids, is equal to 5:1. The (UUDUDD) rings form bands parallel to the [010] direction each surrounded from both sides along the c axis by slabs of five ribbons width having alternative (UUUDDD) topology. Open in the [100] direction channels incorporate K+ ions; this structural feature permits to suppose ion-conductive and/or electrochemical properties of the title compound. The possible mechanism of the δ → γ phase transition is discussed on the basis of the crystal chemical analysis of the KCoPO4 polymorphs. The title compound orders magnetically at TN = 24.8 K.

7.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Article En | MEDLINE | ID: mdl-33751670

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

8.
J Phys Chem Lett ; 12(1): 32-40, 2021 Jan 14.
Article En | MEDLINE | ID: mdl-33296213

We conducted a joint experimental-theoretical investigation of the high-pressure chemistry of europium polyhydrides at pressures of 86-130 GPa. We discovered several novel magnetic Eu superhydrides stabilized by anharmonic effects: cubic EuH9, hexagonal EuH9, and an unexpected cubic (Pm3n) clathrate phase, Eu8H46. Monte Carlo simulations indicate that cubic EuH9 has antiferromagnetic ordering with TN of up to 24 K, whereas hexagonal EuH9 and Pm3n-Eu8H46 possess ferromagnetic ordering with TC = 137 and 336 K, respectively. The electron-phonon interaction is weak in all studied europium hydrides, and their magnetic ordering excludes s-wave superconductivity, except, perhaps, for distorted pseudohexagonal EuH9. The equations of state predicted within the DFT+U approach (U - J were found within linear response theory) are in close agreement with the experimental data. This work shows the great influence of the atomic radius on symmetry-breaking distortions of the crystal structures of superhydrides and on their thermodynamic stability.

...