Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Org Lett ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265076

RESUMEN

Here, we present a new approach for the activation of donor-acceptor cyclopropanes in ring-opening reactions, which does not require the use of a Lewis or Brønsted acid as a catalyst. Donor-acceptor cyclopropanes containing a phenolic group as the donor undergo deprotonation and isomerization to form the corresponding quinone methides. This innovative strategy was applied to achieve (4 + 1)-annulation of cyclopropanes with sulfur ylides, affording functionalized dihydrobenzofurans. Additionally, the generated ortho- and para-(aza)quinone methides can be trapped by various CH-acids.

2.
BMC Biol ; 22(1): 178, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183269

RESUMEN

BACKGROUND: The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis. RESULTS: Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota. Absolute quantitation by multiple reaction monitoring has confirmed the presence of bacterial peptides in the blood plasma and serum in the range of approximately 0.1 nM to 1 µM. The abundance of microbiota peptides reaches its maximum about 5 h after a meal. Most of the peptides correlate with the bacterial composition of the small intestine and are likely obtained by hydrolysis of membrane proteins with trypsin, chymotrypsin and pepsin - the main proteases of the gastrointestinal tract. The peptides have physicochemical properties that likely allow them to selectively pass the intestinal mucosal barrier and resist fibrinolysis. CONCLUSIONS: The proposed approach to the identification of microbiota peptides in the blood, after additional validation, may be useful for determining the microbiota composition of hard-to-reach intestinal areas and monitoring the permeability of the intestinal mucosal barrier.


Asunto(s)
Microbioma Gastrointestinal , Péptidos , Humanos , Microbioma Gastrointestinal/fisiología , Péptidos/análisis , Masculino , Adulto
3.
Artículo en Inglés | MEDLINE | ID: mdl-39177164

RESUMEN

The main pathophysiological hallmark of Parkinson's disease (PD) is the accumulation of aggregated alpha-synuclein (αSyn). Microglial activation is an early event in PD and may play a key role in pathological αSyn aggregation and transmission, as well as in clearance of αSyn and immunotherapy efficacy. Our aim was to investigate how different proposed mechanisms of anti-αSyn immunotherapy may contribute to pathology reduction in various PD-like mouse models. Our mechanistic model of PD pathology in mouse includes αSyn production, aggregation, degradation and distribution in neurons, secretion into interstitial fluid, internalization, and subsequent clearance by neurons and microglia. It describes the influence of neuroinflammation on PD pathogenesis and dopaminergic neurodegeneration. Multiple data from mouse PD models were used for calibration and validation. Simulations of anti-αSyn passive immunotherapy adequately reproduce preclinical data and suggest that (1) immunotherapy is efficient in the reduction of aggregated αSyn in various models of PD-like pathology; (2) prevention of aSyn spread only does not reduce the pathology; (3) a decrease in microglial inflammatory activation and aSyn aggregation may be alternative therapy approaches in PD-like pathology.

4.
Cells ; 13(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38994986

RESUMEN

Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliaminas , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Poliaminas/metabolismo , Línea Celular Tumoral , Espermina/metabolismo , Espermina/análogos & derivados , Acetilación , Células A549
5.
Vaccines (Basel) ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39066356

RESUMEN

The widespread use of the oral poliovaccine from Sabin strains (tOPV) radically reduced poliomyelitis incidence worldwide. However, OPV became a source of neurovirulent vaccine-derived polioviruses (VDPVs). Currently, circulating type 2 VDPVs (cVDPV2) are the leading cause of poliomyelitis. The novel OPV type 2 vaccine (nOPV2), based on genetically modified Sabin strain with increased genetic stability and reduced risk of cVDPV formation, has been used to combat cVDPV2 outbreaks, including one in Tajikistan in 2021. In order to identify the importation of cVDPV2 and nOPV2-derivates, stool samples from 12,127 healthy migrant children under 5 years of age arriving from Tajikistan were examined in Russia (March 2021-April 2022). Viruses were isolated in cell culture and identified via intratype differentiation RT-PCR, VP1 and whole-genome sequencing. cVDPV2 isolates closely related with the Tajikistan one were isolated from two children, and nOPV2-derived viruses were detected in specimens from 106 children from 37 regions of Russia. The duration of nOPV2 excretion ranged from 24 to 124 days post-vaccination. nOPV2 isolates contained 27 mutations per genome (0.36%) on average, with no critical genetic changes, which confirms the genetic stability of nOPV2 during field use. The possibility of epidemiologically significant poliovirus introduction into polio-free countries has been confirmed. The screening of special populations, including migrants, is required to maintain epidemiological well-being.

7.
Nat Commun ; 15(1): 5237, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898005

RESUMEN

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Ováricas , Empalmosomas , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Empalmosomas/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Animales , Ratones , Vesículas Extracelulares/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Reparación del ADN
8.
Cells ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38920664

RESUMEN

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Asunto(s)
Hepacivirus , Poliaminas , Prolina , Urea , Replicación Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiología , Hepacivirus/efectos de los fármacos , Poliaminas/metabolismo , Urea/metabolismo , Urea/farmacología , Replicación Viral/efectos de los fármacos , Arginasa/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Hepatitis C/metabolismo , Hepatitis C/virología , Línea Celular Tumoral , Prolina Oxidasa/metabolismo
9.
Molecules ; 29(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38930918

RESUMEN

PURPOSE OF THE STUDY: the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS: Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS: According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS: The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.


Asunto(s)
Cerio , Dextranos , Escherichia coli , Fibroblastos , Nanocompuestos , Cicatrización de Heridas , Cerio/química , Cerio/farmacología , Dextranos/química , Dextranos/farmacología , Nanocompuestos/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Proliferación Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular
10.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928340

RESUMEN

Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1-4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins-red mScarlet I and green mNeonGreen-separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Células HeLa , COVID-19/virología , COVID-19/diagnóstico , COVID-19/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteasas 3C de Coronavirus/metabolismo , Transporte de Proteínas , Técnicas Biosensibles/métodos
11.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727363

RESUMEN

Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.

12.
Front Cell Dev Biol ; 12: 1403122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818409

RESUMEN

Introduction: Among the various stromal cell types within the tumor microenvironment, cancer-associated fibroblasts (CAFs) emerge as the predominant constituent, exhibiting a diverse array of oncogenic functions not intrinsic to normal fibroblasts. Their involvement spans across all stages of tumorigenesis, encompassing initiation, progression, and metastasis. Current understanding posits the coexistence of distinct subpopulations of CAFs within the tumor microenvironment across a spectrum of solid tumors, showcasing both pro- and antitumor activities. Recent advancements in single-cell transcriptomics have revolutionized our ability to meticulously dissect the heterogeneity inherent to CAF populations. Furthermore, accumulating evidence underscores the pivotal role of CAFs in conferring therapeutic resistance to tumors against various drug modalities. Consequently, efforts are underway to develop pharmacological agents specifically targeting CAFs. Methods: This review embarks on a comprehensive analysis, consolidating data from 36 independent single-cell RNA sequencing investigations spanning 17 distinct human malignant tumor types. Results: Our exploration centers on elucidating CAF population markers, discerning their prognostic relevance, delineating their functional contributions, and elucidating the underlying mechanisms orchestrating chemoresistance. Discussion: Finally, we deliberate on the therapeutic potential of harnessing CAFs as promising targets for intervention strategies in clinical oncology.

13.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731646

RESUMEN

Crystalline cerium(III) phosphate (CePO4), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and CePO4/CeO2 composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined. Ce(PO4)(HPO4)0.5(H2O)0.5 was shown to have a sun protection factor of 2.9, which is comparable with that of nanocrystalline ceria and three times higher than the sun protection factor of CePO4. Composites containing both cerium dioxide and CePO4 demonstrated higher sun protection factors (up to 1.8) than individual CePO4. When compared with the TiO2 Aeroxide P25 reference sample, cerium(III) and cerium(IV) phosphates demonstrated negligible photocatalytic activity. A cytotoxicity analysis performed using two mammalian cell lines, hMSc and NCTC L929, showed that CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and nanocrystalline ceria were all non-toxic. The results of this comparative study indicate that cerium(IV) phosphate Ce(PO4)(HPO4)0.5(H2O)0.5 is more advantageous for use in sunscreens than either cerium(III) phosphate or CePO4/CeO2 composites, due to its improved UV-shielding properties and low photocatalytic activity.

14.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670652

RESUMEN

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Asunto(s)
Astronautas , Nave Espacial , Dosimetría Termoluminiscente , Nave Espacial/instrumentación , Dosimetría Termoluminiscente/instrumentación , Dosimetría Termoluminiscente/métodos , Humanos , Dosis de Radiación , Monitoreo de Radiación/instrumentación , Monitoreo de Radiación/métodos , Radiación Cósmica , Vuelo Espacial
15.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387333

RESUMEN

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Antineoplásicos/química , Antraquinonas/química , Triazoles/farmacología , Proliferación Celular , Puntos de Control del Ciclo Celular , Ligandos
16.
Nanomaterials (Basel) ; 14(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392727

RESUMEN

The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3-5 nm, and their aggregates were 60-130 nm). Nanoceria oxide sols with a wide range of concentrations (10-1-10-6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli's growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study's use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10-2-10-5 M (48-95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10-2-10-3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography-mass spectrometry, during several days of incubation.

17.
Viruses ; 16(1)2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257835

RESUMEN

More than 100 types of non-polio enteroviruses (NPEVs) are ubiquitous in the human population and cause a variety of symptoms ranging from very mild to meningitis and acute flaccid paralysis (AFP). Much of the information regarding diverse pathogenic properties of NPEVs comes from the surveillance of poliovirus, which also yields NPEV. The analysis of 265 NPEV isolations from 10,433 AFP cases over 24 years of surveillance and more than 2500 NPEV findings in patients without severe neurological lesions suggests that types EV-A71, E13, and E25 were significantly associated with AFP. EV-A71 was also significantly more common among AFP patients who had fever at the onset and residual paralysis compared to all AFP cases. In addition, a significant disparity was noticed between types that were common in humans (CV-A2, CVA9, EV-A71, E9, and E30) or in sewage (CVA7, E3, E7, E11, E12, and E19). Therefore, there is significant evidence of non-polio viruses being implicated in severe neurological lesions, but further multicenter studies using uniform methodology are needed for a definitive conclusion.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Enterovirus Humano A , Infecciones por Enterovirus , Mielitis , Enfermedades Neuromusculares , Poliomielitis , Poliovirus , Humanos , Laboratorios , alfa-Fetoproteínas , Poliomielitis/epidemiología , Infecciones por Enterovirus/epidemiología , Federación de Rusia , Antígenos Virales
18.
Sci Rep ; 14(1): 126, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238364

RESUMEN

Economic costs of climate change are conventionally assessed at the aggregated global and national levels, while adaptation is local. When present, regionalised assessments are confined to direct damages, hindered by both data and models' limitations. This article goes beyond the aggregated analysis to explore direct and indirect economic consequences of sea level rise (SLR) at regional and sectoral levels in Europe. Using a dynamic computable general equilibrium model and novel datasets, we estimate the distribution of losses and gains across regions and sectors. A comparison of a high-end scenario against a no-climate-impact baseline suggests a GDP loss of 1.26% (€871.8 billion) for the whole EU&UK. Conversely our refined assessments show that some coastal regions lose 9.56-20.84% of GDP, revealing striking regional disparities. Inland regions grow due to the displaced demand from coastal areas, but the GDP gains are small (0-1.13%). While recovery benefits the construction sector, public services and industry face significant downturns. We show that prioritising recovery of critical sectors locally reduces massive regional GDP losses, at negligible costs to the overall European economy. Our analysis traces regional economic restructuring triggered by SLR, underscoring the necessity of region-specific adaptation policies that embrace uneven geographic impacts and unique sectoral profiles to inform resilient strategy design.

19.
Org Biomol Chem ; 22(5): 1027-1033, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193622

RESUMEN

γ-Aminobutyric acid (GABA) and GABA derivatives have attracted increased attention over the years in the fields of medicinal chemistry and chemical biology due to their interesting biological properties and synthetic relevance. Here, we report a short synthetic route to γ-(het)aryl- and γ-alkenyl-γ-aminobutyric acids, including the antiepileptic drug vigabatrin, from readily available donor-acceptor cyclopropanes and ammonia or methylamine. This protocol includes a facile synthesis of 2-oxopyrrolidine-3-carboxamides and their acid hydrolysis to γ-aryl- or γ-alkenyl-substituted GABAs, which can serve as perspective building blocks for the synthesis of various GABA-based N-heterocycles and bioactive compounds.


Asunto(s)
Vigabatrin , Ácido gamma-Aminobutírico , Anticonvulsivantes/farmacología , Vigabatrin/farmacología , Pirrolidinas/química , Pirrolidinas/farmacología
20.
Int J Lang Commun Disord ; 59(1): 13-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37140204

RESUMEN

BACKGROUND: Recent evidence suggests that speech substantially changes in ageing. As a complex neurophysiological process, it can accurately reflect changes in the motor and cognitive systems underpinning human speech. Since healthy ageing is not always easily discriminable from early stages of dementia based on cognitive and behavioural hallmarks, speech is explored as a preclinical biomarker of pathological itineraries in old age. A greater and more specific impairment of neuromuscular activation, as well as  a specific cognitive and linguistic impairment in dementia, unchain discriminating changes in speech. Yet, there is no consensus on such discriminatory speech parameters, neither on how they should be elicited and assessed. AIMS: To provide a state-of-the-art on speech parameters that allow for early discrimination between healthy and pathological ageing; the aetiology of these parameters; the effect of the type of experimental stimuli on speech elicitation and the predictive power of different speech parameters; and the most promising methods for speech analysis and their clinical implications. METHODS & PROCEDURES: A scoping review methodology is used in accordance with the PRISMA model. Following a systematic search of PubMed, PsycINFO and CINAHL, 24 studies are included and analysed in the review. MAIN CONTRIBUTION: The results of this review yield three key questions for the clinical assessment of speech in ageing. First, acoustic and temporal parameters are more sensitive to changes in pathological ageing and, of these two, temporal variables are more affected by cognitive impairment. Second, different types of stimuli can trigger speech parameters with different degree of accuracy for the discrimination of clinical groups. Tasks with higher cognitive load are more precise in eliciting higher levels of accuracy. Finally, automatic speech analysis for the discrimination of healthy and pathological ageing should be improved for both research and clinical practice. CONCLUSIONS & IMPLICATIONS: Speech analysis is a promising non-invasive tool for the preclinical screening of healthy and pathological ageing. The main current challenges of speech analysis in ageing are the automatization of its clinical assessment and the consideration of the speaker's cognitive background during evaluation. WHAT THIS PAPER ADDS: What is already known on the subject Societal aging  goes hand in hand with the rising incidence of ageing-related neurodegenerations, mainly Alzheimer's disease (AD). This is particularly noteworthy in countries with longer life expectancies. Healthy ageing and early stages of AD share a set of cognitive and behavioural characteristics. Since there is no cure for dementias, developing methods for accurate discrimination of healthy ageing and early AD is currently a priority. Speech has been described as one of the most significantly impaired features in AD. Neuropathological alterations in motor and cognitive systems would underlie specific speech impairment in dementia. Since speech can be evaluated quickly, non-invasively and inexpensively, its value for the clinical assessment of ageing itineraries may be particularly high. What this paper adds to existing knowledge Theoretical and experimental advances in the assessment of speech as a marker of AD have developed rapidly over the last decade. Yet, they are not always known to clinicians. Furthermore, there is a need to provide an updated state-of-the-art on which speech features are discriminatory to AD, how they can be assessed, what kind of results they can yield, and how such results should be interpreted. This article provides an updated overview of speech profiling, methods of speech measurement and analysis, and the clinical power of speech assessment for early discrimination of AD as the most common cause of dementia. What are the potential or actual clinical implications of this work? This article provides an overview of the predictive potential of different speech parameters in relation to AD cognitive impairment. In addition, it discusses the effect that the cognitive state, the type of elicitation task and the type of assessment method may have on the results of the speech-based analysis in ageing.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Envejecimiento Saludable , Humanos , Enfermedad de Alzheimer/diagnóstico , Habla/fisiología , Disfunción Cognitiva/diagnóstico , Lingüística
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA