Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Am J Surg Pathol ; 48(3): 329-336, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38238977

The prognostic value of the traditional pathologic parameters that form part of the American Joint Committee on Cancer staging system and genetic classifications using monosomy chromosome 3 and structural alterations in chromosome 8 are well established and are part of the diagnostic workup of uveal melanoma (UM). However, it has not been fully clarified whether nuclear protein expression of the tumor suppressor gene BAP1 (nBAP1) by immunohistochemistry alone is as powerful a predictor of overall survival (OS) and/or disease-specific survival (DSS) as chromosome analysis. The protein expression of nBAP1 was evaluated in a retrospective cohort study of 308 consecutive patients treated by primary enucleation between January 1974 and December 2022. We correlated clinical, pathologic, and cytogenetic characteristics to identify the best prognostic indicators for OS and DSS. Loss of nBAP1 was detected in 144/308 (47%) of patients. Loss of nBAP1 expression was significantly associated with poor survival. In patients with disomy chromosome 3, nBAP1 negative is significantly associated with poorer OS but not DSS. We observed that older age (>63 years), presence of metastasis, and nBAP1 negative remained independent prognostic factors in multivariate analysis. nBAP1 protein expression proved to be a more reliable prognostic indicator for OS than the American Joint Committee on Cancer staging, M3 status, or The Cancer Genome Atlas classification in this cohort. This study provides support for accurate prognostication of UM patients in routine histology laboratories by immunohistochemistry for nBAP1 alone.


Melanoma , Uveal Neoplasms , Humans , Prognosis , Retrospective Studies , Uveal Neoplasms/genetics , Uveal Neoplasms/diagnosis , Uveal Neoplasms/pathology , Melanoma/diagnosis , Ubiquitin Thiolesterase/genetics , Tumor Suppressor Proteins
2.
J Pers Med ; 12(8)2022 Aug 03.
Article En | MEDLINE | ID: mdl-36013226

Triple negative breast cancer (TNBC) remains a therapeutic challenge due to the lack of targetable genetic alterations and the frequent development of resistance to the standard cisplatin-based chemotherapies. Here, we have taken a systems biology approach to investigate kinase signal transduction networks that are involved in TNBC resistance to cisplatin. Treating a panel of cisplatin-sensitive and cisplatin-resistant TNBC cell lines with a panel of kinase inhibitors allowed us to reconstruct two kinase signalling networks that characterise sensitive and resistant cells. The analysis of these networks suggested that the activation of the PI3K/AKT signalling pathway is critical for cisplatin resistance. Experimental validation of the computational model predictions confirmed that TNBC cell lines with activated PI3K/AKT signalling are sensitive to combinations of cisplatin and PI3K/AKT pathway inhibitors. Thus, our results reveal a new therapeutic approach that is based on identifying targeted therapies that synergise with conventional chemotherapies.

3.
Proc Natl Acad Sci U S A ; 119(32): e2201073119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35914167

Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.


Breast Neoplasms , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Lapatinib/pharmacology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/metabolism , Trastuzumab/metabolism , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
4.
Invest New Drugs ; 37(3): 441-451, 2019 06.
Article En | MEDLINE | ID: mdl-30062574

Despite trastuzumab and pertuzumab improving outcome for patients with HER2-positive metastatic breast cancer, the disease remains fatal for the majority of patients. This study evaluated the anti-proliferative effects of adding anti-HER2 tyrosine kinase inhibitors (TKIs) to trastuzumab and pertuzumab in HER2-positive breast cancer cells. Afatinib was tested alone and in combination with trastuzumab in HER2-positive breast cancer cell lines. TKIs (lapatinib, neratinib, afatinib) combined with trastuzumab and/or pertuzumab were tested in 3 cell lines, with/without amphiregulin and heregulin-1ß. Seven of 11 HER2-positive cell lines tested were sensitive to afatinib (IC50 < 80 nM). Afatinib plus trastuzumab produced synergistic growth inhibition in eight cell lines. In trastuzumab-sensitive SKBR3 cells, the TKIs enhanced response to trastuzumab. Pertuzumab alone did not inhibit growth and did not enhance trastuzumab-induced growth inhibition or antibody-dependent cellular cytotoxicity. Pertuzumab enhanced response to trastuzumab when combined with lapatinib but not neratinib or afatinib. In two trastuzumab-resistant cell lines, the TKIs inhibited growth but adding trastuzumab and/or pertuzumab did not improve response compared to TKIs alone. Amphiregulin plus heregulin-1ß stimulated proliferation of SKBR3 and MDA-MB-453 cells. In the presence of the growth factors, neither antibody inhibited growth and the TKIs showed significantly reduced activity. The triple combination of trastuzumab, pertuzumab and a TKI showed the strongest anti-proliferative activity in all three cell lines, in the presence of exogenous growth factors. In summary, addition of anti-HER2 TKIs to combined anti-HER2 monoclonal antibody therapy results in enhanced anticancer activity. These data contribute to the rationale for studying maximum HER2 blockade in the clinic.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Drug Synergism , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Afatinib/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Antibody-Dependent Cell Cytotoxicity , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , Lapatinib/administration & dosage , Quinolines/administration & dosage , Trastuzumab/administration & dosage , Tumor Cells, Cultured
5.
Int J Oncol ; 50(6): 2221-2228, 2017 Jun.
Article En | MEDLINE | ID: mdl-28498399

Although HER2 targeted therapies have improved prognosis for HER2 positive breast cancer, HER2 positive cancers which co-express ER have poorer response rates to standard HER2 targeted therapies, combined with chemotherapy, than HER2 positive/ER negative breast cancer. Administration of hormone therapy concurrently with chemotherapy and HER2 targeted therapy is generally not recommended. Using publically available gene expression datasets we found that high expression of IGF1R is associated with shorter disease-free survival in patients whose tumors are ER positive and HER2 positive. IGF1R is frequently expressed in HER2 positive breast cancer and there is significant evidence for crosstalk between IGF1R and both HER2 and ER. Therefore, we evaluated the therapeutic potential of targeting ER and IGF1R in cell line models of HER2/ER/IGF1R positive breast cancer, using tamoxifen and two IGF1R targeted tyrosine kinase inhibitors (NVP-AEW541 and BMS-536924). Dual inhibition of ER and IGF1R enhanced growth inhibition in the four HER2 positive cell lines tested and caused an increase in cell cycle arrest in G1 in BT474 cells. In addition, combined treatment with trastuzumab, tamoxifen and either of the IGF1R TKIs enhanced response compared to dual targeting strategies in three of the four HER2 positive breast cancer cell lines tested. Furthermore, in a cell line model of trastuzumab-resistant HER2 positive breast cancer (BT474/Tr), tamoxifen combined with an IGF1R TKI produced a similar enhanced response as observed in the parental BT474 cells suggesting that this combination may overcome acquired trastuzumab resistance in this model. Combining ER and IGF1R targeting with HER2 targeted therapies may be an alternative to HER2 targeted therapy and chemotherapy for patients with HER2/ER/IGF1R positive breast cancer.


Breast Neoplasms/drug therapy , Estrogen Receptor alpha/genetics , Receptor, ErbB-2/genetics , Receptors, Somatomedin/genetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease-Free Survival , Estrogen Receptor alpha/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Receptor, ErbB-2/antagonists & inhibitors , Receptor, IGF Type 1 , Receptors, Somatomedin/antagonists & inhibitors , Tamoxifen/administration & dosage , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
6.
Cancer Cell Int ; 14(1): 108, 2014.
Article En | MEDLINE | ID: mdl-25379014

BACKGROUND: The cancer microenvironment has a strong impact on the growth and dynamics of cancer cells. Conventional 2D culture systems, however, do not reflect in vivo conditions, impeding detailed studies of cancer cell dynamics. This work aims to establish a method to reveal the interaction of cancer and normal epithelial cells using 3D time-lapse. METHODS: GFP-labelled breast cancer cells, MDA-MB-231, were co-cultured with mCherry-labelled non-cancerous epithelial cells, MDCK, in a gel matrix. In the 3D culture, the epithelial cells establish a spherical morphology (epithelial sphere) thus providing cancer cells with accessibility to the basal surface of epithelia, similar to the in vivo condition. Cell movement was monitored using time-lapse analyses. Ultrastructural, immunocytochemical and protein expression analyses were also performed following the time-lapse study. RESULTS: In contrast to the 2D culture system, whereby most MDA-MB-231 cells exhibit spindle-shaped morphology as single cells, in the 3D culture the MDA-MB-231 cells were found to be single cells or else formed aggregates, both of which were motile. The single MDA-MB-231 cells exhibited both round and spindle shapes, with dynamic changes from one shape to the other, visible within a matter of hours. When co-cultured with epithelial cells, the MDA-MB-231 cells displayed a strong attraction to the epithelial spheres, and proceeded to surround and engulf the epithelial cell mass. The surrounded epithelial cells were eventually destroyed, becoming debris, and were taken into the MDA-MB-231 cells. However, when there was a relatively large population of normal epithelial cells, the MDA-MB-231 cells did not engulf the epithelial spheres effectively, despite repeated contacts. MDA-MB-231 cells co-cultured with a large number of normal epithelial cells showed reduced expression of monocarboxylate transporter-1, suggesting a change in the cell metabolism. A decreased level of gelatin-digesting ability as well as reduced production of matrix metaroproteinase-2 was also observed. CONCLUSIONS: This culture method is a powerful technique to investigate cancer cell dynamics and cellular changes in response to the microenvironment. The method can be useful for various aspects such as; different combinations of cancer and non-cancer cell types, addressing the organ-specific affinity of cancer cells to host cells, and monitoring the cellular response to anti-cancer drugs.

...