Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pain ; 160(2): 442-462, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30247267

RESUMEN

Excitatory interneurons account for the majority of neurons in the superficial dorsal horn, but despite their presumed contribution to pain and itch, there is still limited information about their organisation and function. We recently identified 2 populations of excitatory interneuron defined by expression of gastrin-releasing peptide (GRP) or substance P (SP). Here, we demonstrate that these cells show major differences in their morphological, electrophysiological, and pharmacological properties. Based on their somatodendritic morphology and firing patterns, we propose that the SP cells correspond to radial cells, which generally show delayed firing. By contrast, most GRP cells show transient or single-spike firing, and many are likely to correspond to the so-called transient central cells. Unlike the SP cells, few of the GRP cells had long propriospinal projections, suggesting that they are involved primarily in local processing. The 2 populations also differed in responses to neuromodulators, with most SP cells, but few GRP cells, responding to noradrenaline and 5-HT; the converse was true for responses to the µ-opioid agonist DAMGO. Although a recent study suggested that GRP cells are innervated by nociceptors and are strongly activated by noxious stimuli, we found that very few GRP cells receive direct synaptic input from TRPV1-expressing afferents, and that they seldom phosphorylate extracellular signal-regulated kinases in response to noxious stimuli. These findings indicate that the SP and GRP cells differentially process somatosensory information.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Interneuronas/fisiología , Asta Dorsal de la Médula Espinal/citología , Sustancia P/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Analgésicos/farmacología , Animales , Capsaicina/farmacología , Toxina del Cólera/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptido Liberador de Gastrina/genética , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Estimulación Física , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Fármacos del Sistema Sensorial/farmacología , Estadísticas no Paramétricas , Sustancia P/genética , Taquicininas/genética , Taquicininas/metabolismo , Transducción Genética
2.
Nat Neurosci ; 21(6): 894, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29674654

RESUMEN

In the version of this article initially published online, the labels were switched for the right-hand pair of bars in Fig. 4e. The left one of the two should be Chloroquine + veh, the right one Chloroquine + CNO. The error has been corrected in the print, HTML and PDF versions of the article.

3.
Nat Neurosci ; 21(5): 707-716, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29556030

RESUMEN

Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide.


Asunto(s)
Vías Nerviosas/fisiopatología , Dolor/fisiopatología , Prurito/fisiopatología , Somatostatina/metabolismo , Animales , Dinorfinas/metabolismo , Femenino , Ganglios Espinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Dolor/metabolismo , Prurito/metabolismo , Receptores del Factor Natriurético Atrial/biosíntesis , Receptores del Factor Natriurético Atrial/metabolismo , Receptores Purinérgicos/metabolismo , Receptores de Somatostatina/antagonistas & inhibidores , Receptores de Somatostatina/genética , Células Receptoras Sensoriales , Somatostatina/biosíntesis , Médula Espinal/citología , Médula Espinal/fisiopatología
4.
Neuron ; 97(4): 806-822.e10, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29429934

RESUMEN

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


Asunto(s)
Ganglios Espinales/fisiopatología , Inmunoglobulina G/administración & dosificación , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Dolor Nociceptivo/inmunología , Dolor Nociceptivo/fisiopatología , Células Receptoras Sensoriales/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Inmunización Pasiva , Masculino , Mecanotransducción Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Células del Asta Posterior/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología
5.
Pain ; 157(3): 598-612, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26882346

RESUMEN

The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread.


Asunto(s)
Interneuronas/metabolismo , Inhibición Neural/fisiología , Neuropéptido Y/biosíntesis , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Fenómenos Electrofisiológicos/fisiología , Femenino , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/biosíntesis , Humanos , Interneuronas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuropéptido Y/análisis , Técnicas de Cultivo de Órganos , Células del Asta Posterior/química , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal/química
6.
J Neurosci ; 35(19): 7626-42, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972186

RESUMEN

The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.


Asunto(s)
Vías Aferentes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Priones/metabolismo , Médula Espinal/citología , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Capsaicina/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Oncogénicas v-fos/genética , Proteínas Oncogénicas v-fos/metabolismo , Priones/genética , Receptores de Neuroquinina-1/metabolismo , Fármacos del Sistema Sensorial/farmacología
7.
Mol Pain ; 9: 56, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24176114

RESUMEN

BACKGROUND: Inhibitory interneurons in the superficial dorsal horn play important roles in modulating sensory transmission, and these roles are thought to be performed by distinct functional populations. We have identified 4 non-overlapping classes among the inhibitory interneurons in the rat, defined by the presence of galanin, neuropeptide Y, neuronal nitric oxide synthase (nNOS) and parvalbumin. The somatostatin receptor sst2A is expressed by ~50% of the inhibitory interneurons in this region, and is particularly associated with nNOS- and galanin-expressing cells. The main aim of the present study was to test whether a genetically-defined population of inhibitory interneurons, those expressing green fluorescent protein (GFP) in the PrP-GFP mouse, belonged to one or more of the neurochemical classes identified in the rat. RESULTS: The expression of sst2A and its relation to other neurochemical markers in the mouse was similar to that in the rat, except that a significant number of cells co-expressed nNOS and galanin. The PrP-GFP cells were entirely contained within the set of inhibitory interneurons that possessed sst2A receptors, and virtually all expressed nNOS and/or galanin. GFP was present in ~3-4% of neurons in the superficial dorsal horn, corresponding to ~16% of the inhibitory interneurons in this region. Consistent with their sst2A-immunoreactivity, all of the GFP cells were hyperpolarised by somatostatin, and this was prevented by administration of a selective sst2 receptor antagonist or a blocker of G-protein-coupled inwardly rectifying K+ channels. CONCLUSIONS: These findings support the view that neurochemistry provides a valuable way of classifying inhibitory interneurons in the superficial laminae. Together with previous evidence that the PrP-GFP cells form a relatively homogeneous population in terms of their physiological properties, they suggest that these neurons have specific roles in processing sensory information in the dorsal horn.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/metabolismo , Células del Asta Posterior/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones
8.
J Neurophysiol ; 105(5): 2108-20, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21346211

RESUMEN

Fast glutamatergic transmission via ionotropic receptors is critical for the generation of locomotion by spinal motor networks. In addition, glutamate can act via metabotropic glutamate receptors (mGluRs) to modulate the timing of ongoing locomotor activity. In the present study, we investigated whether mGluRs also modulate the intensity of motor output generated by spinal motor networks. Application of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reduced the amplitude and increased the frequency of locomotor-related motoneuron output recorded from the lumbar ventral roots of isolated mouse spinal cord preparations. Whole cell patch-clamp recordings of spinal motoneurons revealed multiple mechanisms by which group I mGluRs modulate motoneuron output. Although DHPG depolarized the resting membrane potential and reduced the voltage threshold for action potential generation, the activation of group I mGluRs had a net inhibitory effect on motoneuron output that appeared to reflect the modulation of fast, inactivating Na(+) currents and action potential parameters. In addition, group I mGluR activation decreased the amplitude of locomotor-related excitatory input to motoneurons. Analyses of miniature excitatory postsynaptic currents indicated that mGluRs modulate synaptic drive to motoneurons via both pre- and postsynaptic mechanisms. These data highlight group I mGluRs as a potentially important source of neuromodulation within the spinal cord that, in addition to modulating components of the central pattern generator for locomotion, can modulate the intensity of motoneuron output during motor behavior. Given that group I mGluR activation reduces motoneuron excitability, mGluRs may provide negative feedback control of motoneuron output, particularly during high levels of glutamatergic stimulation.


Asunto(s)
Potenciales de Acción/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Benzoatos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA