Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768585

RESUMEN

N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Transactivadores/genética , Transactivadores/metabolismo , Replicación Viral/genética , ARN Viral/genética , ARN Viral/metabolismo
2.
J Biol Chem ; 298(11): 102513, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150501

RESUMEN

The human cytomegalovirus (HCMV) UL97 protein is a conserved herpesvirus protein kinase (CHPK) and a viral cyclin-dependent kinase (v-CDK). However, mechanisms regulating its activity in the context of infection are unknown. Here, we identified several cellular regulatory 14-3-3 proteins as UL97-interacting partners that promote UL97 stability. Humans are known to encode seven isoforms of 14-3-3 proteins (ß, ε, η, γ, σ, θ, and ζ) that bind phosphoserines or phosphothreonines to impact protein structure, stability, activity, and localization. Our proteomic analysis of UL97 identified 49 interacting partners, including 14-3-3 isoforms ß, η, and γ. Furthermore, coimmunoprecipitation with Western blotting assays demonstrated that UL97 interaction with 14-3-3 isoforms ß, ε, η, γ, and θ occurs in a kinase activity-dependent manner. Using mutational analysis, we determined the serine residue at amino acid 13 of UL97 is crucial for 14-3-3 interaction. We demonstrate UL97 S13A (serine to alanine substitution at residue 13) retains kinase activity but the mutant protein accumulated at lower levels than WT UL97. Finally, we show both laboratory (AD169) and clinical (TB40/E) strains of HCMV encoding UL97 S13A replicated with WT kinetics in fibroblasts but showed decreased UL97 accumulation. Taken together, we conclude that 14-3-3 proteins interact with and stabilize UL97 during HCMV infection.


Asunto(s)
Proteínas 14-3-3 , Citomegalovirus , Humanos , Citomegalovirus/fisiología , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Serina/metabolismo , Proteómica , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
mBio ; 13(4): e0097122, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856559

RESUMEN

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Asunto(s)
COVID-19 , FN-kappa B , Citocinas/metabolismo , Humanos , FN-kappa B/metabolismo , Sistemas de Lectura Abierta , SARS-CoV-2/genética , Ubiquitinación
4.
Microbiol Immunol ; 65(1): 10-16, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33230863

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.


Asunto(s)
COVID-19/transmisión , Ozono/farmacología , Virulencia/efectos de los fármacos , Humedad , SARS-CoV-2 , Agua
5.
ACS Chem Biol ; 13(1): 189-199, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29215867

RESUMEN

Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.


Asunto(s)
Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Virales/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Citomegalovirus/enzimología , Herpesvirus Humano 4/enzimología , Nucleosomas/metabolismo , Ingeniería de Proteínas/métodos , Empalme del ARN , Especificidad por Sustrato , Proteínas Virales/química
6.
Virology ; 512: 95-103, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28946006

RESUMEN

Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle.


Asunto(s)
Citomegalovirus/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína de Retinoblastoma/metabolismo , Células Cultivadas , Ciclinas/genética , Ciclinas/metabolismo , Citomegalovirus/metabolismo , Factor de Transcripción E2F3/genética , Factor de Transcripción E2F3/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fase G1 , Regulación Viral de la Expresión Génica/fisiología , Humanos , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Subunidades de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fase de Descanso del Ciclo Celular , Proteína de Retinoblastoma/genética
7.
J Biol Chem ; 292(16): 6583-6599, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28289097

RESUMEN

The human cytomegalovirus (HCMV)-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates the retinoblastoma (Rb) tumor suppressor. Here, we identify the other Rb family members p107 and p130 as novel targets of UL97. UL97 phosphorylates p107 and p130 thereby inhibiting their ability to repress the E2F-responsive E2F1 promoter. As with Rb, this phosphorylation, and the rescue of E2F-responsive transcription, is dependent on the L1 LXCXE motif in UL97 and its interacting clefts on p107 and p130. Interestingly, UL97 does not induce the disruption of all p107-E2F or p130-E2F complexes, as it does to Rb-E2F complexes. UL97 strongly interacts with p107 but not Rb or p130. Thus the inhibitory mechanisms of UL97 for Rb family protein-mediated repression of E2F-responsive transcription appear to differ for each of the Rb family proteins. The immediate early 1 (IE1) protein of HCMV also rescues p107- and p130-mediated repression of E2F-responsive gene expression, but it does not induce their phosphorylation and does not disrupt p107-E2F or p130-E2F complexes. The unique regulation of Rb family proteins by HCMV UL97 and IE1 attests to the importance of modulating Rb family protein function in HCMV-infected cells.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Alelos , Secuencias de Aminoácidos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Mutación , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Regiones Promotoras Genéticas
8.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 191-201, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27836746

RESUMEN

Telomeres are specialized chromatin structures that prevent the degradation and instability of the ends of linear chromosomes. While telomerase maintains long stretches of the telomeric repeat, the majority of telomeric DNA is duplicated by conventional DNA replication. A fundamental step in eukaryotic DNA replication involves chromatin binding of the origin recognition complex (ORC). In human cells, telomeric repeat binding factor 2 (TRF2) is thought to play a role in the recruitment of ORC onto telomeres. To better understand the mechanism of TRF2-mediated ORC recruitment, we utilized a lacO-LacI protein tethering system in U2OS cells and found that ectopically targeted TRF2, but not TRF1, can recruit ORC onto the lacO array. We further found that the TRF homology (TRFH) dimerization domain of TRF2, but not its mutant defective in dimerization, is sufficient for ORC and minichromosome maintenance (MCM) recruitment. Mutations impairing the dimerization also compromised ORC recruitment by full-length TRF2. Similar results were obtained using immunoprecipitation and GST pull-down assays. Together, these results suggest that dimerized TRF2 recruits ORC and stimulates pre-replication complex (pre-RC) formation at telomeres through the TRFH domain.


Asunto(s)
Cromatina/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Replicación del ADN , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Represoras Lac/genética , Represoras Lac/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Mutación , Complejo de Reconocimiento del Origen/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Dominios Proteicos , Multimerización de Proteína , Transducción de Señal , Telómero/ultraestructura , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética
9.
J Biol Chem ; 290(32): 19666-80, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100623

RESUMEN

The retinoblastoma (Rb) tumor suppressor restricts cell cycle progression by repressing E2F-responsive transcription. Cellular cyclin-dependent kinase (CDK)-mediated Rb inactivation through phosphorylation disrupts Rb-E2F complexes, stimulating transcription. The human cytomegalovirus (HCMV) UL97 protein is a viral CDK (v-CDK) that phosphorylates Rb. Here we show that UL97 phosphorylates 11 of the 16 consensus CDK sites in Rb. A cleft within Rb accommodates peptides with the amino acid sequence LXCXE. UL97 contains three such motifs. We determined that the first LXCXE motif (L1) of UL97 and the Rb cleft enhance UL97-mediated Rb phosphorylation. A UL97 mutant with a non-functional L1 motif (UL97-L1m) displayed significantly reduced Rb phosphorylation at multiple sites. Curiously, however, it efficiently disrupted Rb-E2F complexes but failed to relieve Rb-mediated repression of E2F reporter constructs. The HCMV immediate early 1 protein cooperated with UL97-L1m to inactivate Rb in transfection assays, likely indicating that cells infected with a UL97-L1m mutant virus show no defects in growth or E2F-responsive gene expression because of redundant viral mechanisms to inactivate Rb. Our data suggest that UL97 possesses a mechanism to elicit E2F-dependent gene expression distinct from disruption of Rb-E2F complexes and dependent upon both the L1 motif of UL97 and the cleft region of Rb.


Asunto(s)
Citomegalovirus/metabolismo , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Interacciones Huésped-Patógeno , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína de Retinoblastoma/metabolismo , Sitios de Unión , Línea Celular Tumoral , Citomegalovirus/genética , Factor de Transcripción E2F1/genética , Fibroblastos/virología , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cultivo Primario de Células , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/genética , Transducción de Señal , Transcripción Genética
10.
Cell Cycle ; 13(3): 471-81, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24280901

RESUMEN

Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27(Kip1) was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCF(Skp2) ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCF(Skp2) pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , ADN/metabolismo , Fase S , Proteínas de Ciclo Celular/genética , Línea Celular , Silenciador del Gen , Inestabilidad Genómica , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal
11.
J Virol ; 87(18): 10126-38, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23843639

RESUMEN

All eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins. Furthermore, 17-DMAG treatment abrogates expression of the human cytomegalovirus (HCMV) kinase UL97 in HCMV-infected human fibroblasts. Importantly, 17-DMAG treatment decreased the EBV titer approximately 100-fold in lytically infected AGS-Akata cells without causing significant cellular toxicity during the same time frame. Increased EBV PK expression in 17-DMAG-treated AGS-Akata cells did not restore EBV titers, suggesting that 17-DMAG simultaneously targets multiple viral and/or cellular proteins required for efficient viral replication. These results suggest that Hsp90 inhibitors, including 17-DMAG, may be a promising group of drugs that could have profound antiviral effects on herpesviruses.


Asunto(s)
Antivirales/metabolismo , Benzoquinonas/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Herpesvirus Humano 4/fisiología , Lactamas Macrocíclicas/metabolismo , Proteínas Quinasas/metabolismo , Replicación Viral/efectos de los fármacos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Herpesvirus Humano 4/efectos de los fármacos , Humanos , Mapeo de Interacción de Proteínas , Carga Viral , Cultivo de Virus
12.
Cell Cycle ; 9(4): 807-14, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20139729

RESUMEN

Expression of Epstein-Barr Virus BZLF1, a key protein initiating the switch from latent to lytic infection, is known to cause cell growth arrest by accumulating p53 and p21(WAF1/CIP1) in epithelial cells, but its molecular mechanism remains elusive. We found here that the BZLF1 protein stimulates p53 binding to its recognition sequence. The BZLF1 accelerated the rate of p53-DNA complex formation through the interaction with p53 protein and also enhanced p53-specific transcription in vitro. Furthermore, p53 protein was found to bind to its target promoter regions specifically in the early stages of lytic replication. Overexpression of p53 at the early stages of lytic replication enhanced viral genome replication, supporting the idea that p53 plays an important role in the initiation steps of EBV replication. Taking the independent role of BZLF1 on p53 degradation into consideration, we propose that the BZLF1 protein regulates p53 and its target gene products in two distinctive manners; transient induction of p53 at the early stages for the initiation of viral productive replication and p53 degradation at the later stages for S-phase like environment preferable for viral replication.


Asunto(s)
Herpesvirus Humano 4/genética , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Replicación Viral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Viral de la Expresión Génica , Células HeLa , Humanos , Activación Transcripcional
13.
J Cell Sci ; 123(Pt 2): 225-35, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20048340

RESUMEN

CDC6, a replication licensing protein, is partially exported to the cytoplasm in human cells through phosphorylation by Cdk during S phase, but a significant proportion remains in the nucleus. We report here that human CDC6 physically interacts with ATR, a crucial checkpoint kinase, in a manner that is stimulated by phosphorylation by Cdk. CDC6 silencing by siRNAs affected ATR-dependent inhibition of mitotic entry elicited by modest replication stress. Whereas a Cdk-phosphorylation-mimicking CDC6 mutant could rescue the checkpoint defect by CDC6 silencing, a phosphorylation-deficient mutant could not. Furthermore, we found that the CDC6-ATR interaction is conserved in Xenopus. We show that the presence of Xenopus CDC6 during S phase is essential for Xenopus ATR to bind to chromatin in response to replication inhibition. In addition, when human CDC6 amino acid fragment 180-220, which can bind to both human and Xenopus ATR, was added to Xenopus egg extracts after assembly of the pre-replication complex, Xenopus Chk1 phosphorylation was significantly reduced without lowering replication, probably through a sequestration of CDC6-mediated ATR-chromatin interaction. Thus, CDC6 might regulate replication-checkpoint activation through the interaction with ATR in higher eukaryotic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Células Eucariotas/enzimología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Extractos Celulares , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasas Ciclina-Dependientes/metabolismo , Activación Enzimática , Células Eucariotas/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Mutación/genética , Óvulo/citología , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Estrés Fisiológico
14.
PLoS Pathog ; 5(7): e1000530, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19649319

RESUMEN

p53-signaling is modulated by viruses to establish a host cellular environment advantageous for their propagation. The Epstein-Barr virus (EBV) lytic program induces phosphorylation of p53, which prevents interaction with MDM2. Here, we show that induction of EBV lytic program leads to degradation of p53 via an ubiquitin-proteasome pathway independent of MDM2. The BZLF1 protein directly functions as an adaptor component of the ECS (Elongin B/C-Cul2/5-SOCS-box protein) ubiquitin ligase complex targeting p53 for degradation. Intringuingly, C-terminal phosphorylation of p53 resulting from activated DNA damage response by viral lytic replication enhances its binding to BZLF1 protein. Purified BZLF1 protein-associated ECS could be shown to catalyze ubiquitination of phospho-mimetic p53 more efficiently than the wild-type in vitro. The compensation of p53 at middle and late stages of the lytic infection inhibits viral DNA replication and production during lytic infection, suggesting that the degradation of p53 is required for efficient viral propagation. Taken together, these findings demonstrate a role for the BZLF1 protein-associated ECS ligase complex in regulation of p53 phosphorylated by activated DNA damage signaling during viral lytic infection.


Asunto(s)
Herpesvirus Humano 4/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Herpesvirus Humano 4/crecimiento & desarrollo , Humanos , Datos de Secuencia Molecular , Fosforilación , Ubiquitinación , Replicación Viral
15.
J Biol Chem ; 284(32): 21557-68, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19491105

RESUMEN

The Epstein-Barr virus (EBV) BMRF1 protein is an essential replication protein acting at viral replication forks as a viral DNA polymerase processivity factor, whereas the BALF2 protein is a single-stranded DNA-binding protein that also acts at replication forks and is most abundantly expressed during viral productive replication. Here we document that the BMRF1 protein evidently enhances viral BZLF1 transcription factor-mediated transactivation of the BALF2 gene promoter. Mutagenesis and electrophoretic mobility shift assays demonstrated the BALF2 promoter to harbor two BZLF1 protein-binding sites (BZLF1-responsive elements). Direct binding of the BZLF1 protein to BZLF1-responsive elements and physical interaction between BZLF1 and BMRF1 proteins are prerequisite for the BMRF1 protein up-regulation of the BALF2 gene promoter. A monomeric mutant, C95E, which is defective in homodimerization, could still interact and enhance BZLF1-mediated transactivation. Furthermore although EBV protein kinase phosphorylates BMRF1 protein extensively, it turned out that phosphorylation of the protein by the kinase is inhibitory to the enhancement of the BZLF1-mediated transactivation of BALF2 promoter. Exogenous expression of BMRF1 protein augmented BALF2 expression in HEK293 cells harboring the EBV genome but lacking BMRF1 and BALF5 genes, demonstrating functions as a transcriptional regulator in the context of viral infection. Overall the BMRF1 protein is a multifunctional protein that cannot only act as a DNA polymerase processivity factor but also enhances BALF2 promoter transcription as a coactivator for the BZLF1 protein, regulating the expression level of viral single-stranded DNA-binding protein.


Asunto(s)
Antígenos Virales/metabolismo , Proteínas de Unión al ADN/biosíntesis , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Proteínas Virales/biosíntesis , Secuencia de Bases , Unión Competitiva , Línea Celular Tumoral , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Humanos , Luciferasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/química , Transactivadores/metabolismo , Proteínas Virales/genética
16.
Virology ; 389(1-2): 75-81, 2009 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-19427010

RESUMEN

The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Línea Celular , Replicación del ADN , ADN Viral/biosíntesis , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Genoma Viral , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Virales/genética
17.
J Biol Chem ; 284(28): 18923-31, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19451650

RESUMEN

Epstein-Barr virus (EBV) productive replication occurs in an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. The EBV protein kinase (PK), encoded by the viral BGLF4 gene, is a Ser/Thr protein kinase, which phosphorylates both viral and cellular proteins, modifying the cellular environment for efficient viral productive replication. We here provide evidence that the EBV PK phosphorylates the CDK inhibitor p27(Kip1), resulting in ubiquitination and degradation in a proteasome-dependent manner during EBV productive replication. Experiments with BGLF4 knockdown by small interfering RNA and BGLF4 knock-out viruses clarified that EBV PK is involved in p27(Kip1) degradation upon lytic replication. Transfection of the BGLF4 expression vector revealed that EBV PK alone could phosphorylate the Thr-187 residue of p27(Kip1) and that the ubiquitination and degradation of p27(Kip1) occurred in an SCF(Skp2) ubiquitin ligase-dependent manner. In vitro, EBV PK proved capable of phosphorylating p27(Kip1) at Thr-187. Unlike cyclin E-CDK2 activity, the EBV PK activity was not inhibited by p27(Kip1). Overall, EBV PK enhances p27(Kip1) degradation effectively upon EBV productive replication, contributing to establishment of an S-phase-like cellular environment with high CDK activity.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Vectores Genéticos , Células HeLa , Humanos , Fosforilación , Plásmidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Fase S , Treonina/química , Ubiquitina/química , Proteínas Virales/metabolismo
18.
J Virol ; 83(13): 6641-51, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19386720

RESUMEN

Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.


Asunto(s)
Reparación del ADN , Herpesvirus Humano 4/fisiología , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Replicación Viral , Animales , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Viral , Herpesvirus Humano 4/genética , Humanos , Proteína Homóloga de MRE11 , Fosforilación , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética
19.
Virology ; 388(1): 204-11, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19375142

RESUMEN

The Epstein-Barr virus (EBV) lytic program elicits ATM-dependent DNA damage response, resulting in phosphorylation of p53 at N-terminus, which prevents interaction with MDM2. Nevertheless, p53-downstream signaling is blocked. We found here that during the lytic infection p53 was actively degraded in a proteasome-dependent manner even with a reduced level of MDM2. BZLF1 protein enhanced the ubiquitination of p53 in SaOS-2 cells. The degradation of p53 was observed even in the presence of Nutlin-3, an inhibitor of p53-MDM2 interaction, and also in mouse embryo fibroblasts lacking mdm2 gene, indicating that the BZLF1 protein-induced degradation of p53 was independent of MDM2. Furthermore, Nutlin-3 increased the level of p53 in the latent phase of EBV infection but not in the lytic phase. Although p53 level is regulated by MDM2 in the latent phase, it might be mediated by the BZLF1 protein-associated E3 ubiquitin ligase in the lytic phase for efficient viral propagation.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Herpesvirus Humano 4/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Leupeptinas , Ratones , Transactivadores/genética , Transcripción Genética
20.
J Biol Chem ; 284(12): 8033-41, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19164291

RESUMEN

Reactivation of the Epstein-Barr virus from latency is dependent on expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found here that Transducer of Regulated cAMP-response Element-binding Protein (CREB) (TORC) 2 enhances Zp activity 10-fold and more than 100-fold with co-expression of the BZLF1 protein. Mutational analysis of Zp revealed that the activation by TORC is dependent on ZII and ZIII cis elements, binding sites for CREB family transcriptional factors and the BZLF1 protein, respectively. Immunoprecipitation, chromatin immunoprecipitation, and reporter assay using Gal4-luc and Gal4BD-BZLF1 fusion protein indicate that TORC2 interacts with BZLF1, and that the complex is efficiently recruited onto Zp. These observations clearly indicate that TORC2 activates the promoter through interaction with the BZLF1 protein as well as CREB family transcriptional factors. Induction of the lytic replication resulted in the translocation of TORC2 from cytoplasm to viral replication compartments in nuclei, and furthermore, activation of Zp by TORC2 was augmented by calcium-regulated phosphatase, calcineurin. Silencing of endogenous TORC2 gene expression by RNA interference decreased the levels of the BZLF1 protein in response to 12-O-tetradecanoylphorbol-13-acetate/ionophore. Based on these results, we conclude that Epstein-Barr virus exploits the calcineurin-TORC signaling pathway through interactions between TORC and the BZLF1 protein in reactivation from latency.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Herpesvirus Humano 4/fisiología , Elementos de Respuesta/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Viral/fisiología , Latencia del Virus/fisiología , Carcinógenos/farmacología , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación Viral de la Expresión Génica/efectos de los fármacos , Regulación Viral de la Expresión Génica/fisiología , Humanos , Mutación , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Acetato de Tetradecanoilforbol/farmacología , Transactivadores/genética , Factores de Transcripción/genética , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA