Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NAR Cancer ; 6(2): zcae022, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38751935

RESUMEN

DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.

2.
Hepatol Res ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430513

RESUMEN

BACKGROUND AND AIM: Autotaxin (ATX) is an extracellular lysophospholipase D that catalyzes the hydrolysis of lysophosphatidylcholine into lysophosphatidic acid (LPA). Recent accumulating evidence indicates the biological roles of ATX in malignant tumors. However, the expression and clinical implications of ATX in human cholangiocarcinoma (CCA) remain elusive. METHODS: In this study, the expression of ATX in 97 human CCA tissues was evaluated by immunohistochemistry. Serum ATX levels were determined in CCA patients (n = 26) and healthy subjects (n = 8). Autotaxin expression in cell types within the tumor microenvironment was characterized by immunofluorescence staining. RESULTS: High ATX expression in CCA tissue was significantly associated with a higher frequency of lymph node metastasis (p = 0.050). High ATX expression was correlated with shorter overall survival (p = 0.032) and recurrence-free survival (RFS) (p = 0.001) than low ATX expression. In multivariate Cox analysis, high ATX expression (p = 0.019) was an independent factor for shorter RFS. Compared with low ATX expression, high ATX expression was significantly associated with higher Ki-67-positive cell counts (p < 0.001). Serum ATX levels were significantly higher in male CCA patients than in healthy male subjects (p = 0.030). In the tumor microenvironment of CCA, ATX protein was predominantly expressed in tumor cells, cancer-associated fibroblasts, plasma cells, and biliary epithelial cells. CONCLUSIONS: Our study highlights the clinical evidence and independent prognostic value of ATX in human CCA.

3.
Carcinogenesis ; 45(3): 119-130, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38123365

RESUMEN

The role of the ferroptosis-related gene glutathione peroxidase 4 (GPX4) in oncology has been extensively investigated. However, the clinical implications of GPX4 in patients with intrahepatic cholangiocarcinoma (ICC) remain unknown. This study aimed to evaluate the prognostic impact of GPX4 and its underlying molecular mechanisms in patients with ICC. Fifty-seven patients who underwent surgical resection for ICC between 2010 and 2017 were retrospectively analyzed. Based on the immunohistochemistry, patients were divided into GPX4 high (n = 15) and low (n = 42) groups, and clinical outcomes were assessed. Furthermore, the roles of GPX4 in cell proliferation, migration and gene expression were analyzed in ICC cell lines in vitro and in vivo. The results from clinical study showed that GPX4 high group showed significant associations with high SUVmax on 18F-fluorodeoxyglucose-positron emission tomography (≥8.0, P = 0.017), multiple tumors (P = 0.004), and showed glucose transporter 1 (GLUT1) high expression with a trend toward significance (P = 0.053). Overall and recurrence-free survival in the GPX4 high expression group were significantly worse than those in the GPX4 low expression group (P = 0.038 and P < 0.001, respectively). In the experimental study, inhibition of GPX4 attenuated cell proliferation and migration in ICC cell lines. Inhibition of GPX4 also decreased the expression of glucose metabolism-related genes, such as GLUT1 or HIF1α. Mechanistically, these molecular changes are regulated in Akt-mechanistic targets of rapamycin axis. In conclusion, this study suggested the pivotal value of GPX4 serving as a prognostic marker for patients with ICC. Furthermore, GPX4 can mediate glucose metabolism of ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ferroptosis , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ferroptosis/genética , Transportador de Glucosa de Tipo 1/genética , Estudios Retrospectivos , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Colangiocarcinoma/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA