Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 7, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930592

RESUMEN

The triboelectric nanogenerator (TENG) can effectively collect energy based on contact electrification (CE) at diverse interfaces, including solid-solid, liquid-solid, liquid-liquid, gas-solid, and gas-liquid. This enables energy harvesting from sources such as water, wind, and sound. In this review, we provide an overview of the coexistence of electron and ion transfer in the CE process. We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies. The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques. Additionally, we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces. Finally, this review elucidates the future opportunities and challenges that interface CE may encounter. We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.

2.
RSC Adv ; 13(9): 5744-5752, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816072

RESUMEN

Conventional three-electrode systems used in electrochemical measurement demand time-consuming and maintenance intensive procedures to enable accurate and repeatable electrochemical measurements. Traditionally, different metal configurations are used to establish the electrochemical gradient required to acquire the redox activity, and vary between different electrochemical measurement platforms. However, in this work, we report using the same metal (gold) for the counter, working and reference electrodes fabricated on a miniaturized printed circuit board (PCB) for a much simpler design. Potassium ferricyanide, widely used as a redox probe for electrochemical characterization, was utilized to acquire cyclic voltametric profiles using both the printed circuit board-based gold-gold-gold three-electrode and conventional three-electrode systems (glassy carbon electrode or graphite foil as the working electrode, platinum wire as the counter electrode, and Ag/AgCl as the reference electrode). The results show that both types of electrode systems generated similar cyclic voltammograms within the same potential window (-0.5 to +0.7 V). However, the novel PCB-based same-metal three-electrode electrochemical cell only required a few activation cycles and exhibited impressive cyclic voltametric repeatability with higher redox sensitivity and detection window, while using only trace amounts of solutions/analytes.

3.
3 Biotech ; 12(7): 148, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35733833

RESUMEN

Algal green energy has emerged as an alternative to conventional energy production using fossil fuels. Microbial fuel cells (MFCs), photosynthetic microbial fuel cells (PMFCs) and biophotovoltaic (BPV) platforms have been developed to utilize microalgae for bioelectricity generation, wastewater treatment and biomass production. There remains a lack of research on marine microalgae in these systems, so to the best of our knowledge, all information on their integration in these systems have been gathered in this review, and are used to compare with the interesting studies on freshwater microalgae. The performance of the systems is extremely reliant on the microalgae species and/or microbial community used, the size of the bio-electrochemical cell, and electrode material and distance used. The mean was calculated for each system, PMFC has the highest average maximum power density of 344 mW/m2, followed by MFC (179 mW/m2) and BPV (58.9 mW/m2). In addition, the advantages and disadvantages of each system are highlighted. Although all three systems face the issue of low power outputs, the integration of a suitable energy harvester could potentially increase power efficiency and make them applicable for lower power applications.

4.
Nanomaterials (Basel) ; 12(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269327

RESUMEN

The prevalence of photosynthesis, as the major natural solar energy transduction mechanism or biophotovoltaics (BPV), has always intrigued mankind. Over the last decades, we have learned to extract this renewable energy through continuously improving solid-state semiconductive devices, such as the photovoltaic solar cell. Direct utilization of plant-based BPVs has, however, been almost impracticable so far. Nevertheless, the electrochemical platform of fuel cells (FCs) relying on redox potentials of algae suspensions or biofilms on functionalized anode materials has in recent years increasingly been demonstrated to produce clean or carbon-negative electrical power generators. Interestingly, these algal BPVs offer unparalleled advantages, including carbon sequestration, bioremediation and biomass harvesting, while producing electricity. The development of high performance and durable BPVs is dependent on upgraded anode materials with electrochemically dynamic nanostructures. However, the current challenges in the optimization of anode materials remain significant barriers towards the development of commercially viable technology. In this context, two-dimensional (2D) graphene-based carbonaceous material has widely been exploited in such FCs due to its flexible surface functionalization properties. Attempts to economically improve power outputs have, however, been futile owing to molecular scale disorders that limit efficient charge coupling for maximum power generation within the anodic films. Recently, Langmuir-Blodgett (LB) film has been substantiated as an efficacious film-forming technique to tackle the above limitations of algal BPVs; however, the aforesaid technology remains vastly untapped in BPVs. An in-depth electromechanistic view of the fabrication of LB films and their electron transference mechanisms is of huge significance for the scalability of BPVs. However, an inclusive review of LB films applicable to BPVs has yet to be undertaken, prohibiting futuristic applications. Consequently, we report an inclusive description of a contextual outline, functional principles, the LB film-formation mechanism, recent endeavors in developing LB films and acute encounters with prevailing BPV anode materials. Furthermore, the research and scale-up challenges relating to LB film-integrated BPVs are presented along with innovative perceptions of how to improve their practicability in scale-up processes.

5.
Sci Rep ; 8(1): 6009, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651139

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 8(1): 896, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343758

RESUMEN

The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.


Asunto(s)
ADN/genética , Penaeidae/genética , Animales , Acuicultura/métodos , Asia , Bacterias/genética , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Penaeidae/microbiología , Penaeidae/virología , Alimentos Marinos/microbiología , Virosis/genética , Virosis/virología , Virus/genética
7.
Sci Rep ; 6: 29879, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435636

RESUMEN

The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.


Asunto(s)
Basidiomycota/química , ADN/química , Nanotecnología/métodos , Semiconductores , Basidiomycota/genética , ADN/genética , ADN/aislamiento & purificación , Electrónica
8.
J Nanosci Nanotechnol ; 16(4): 3188-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451602

RESUMEN

By using I-V, EL-V, displacement current measurement (DCM) and time-resolved electric-field-induced optical second-harmonic generation (TR-EFISHG) measurement, we studied the influence of interface pentacene layer inserted between ITO and a-NPD layers in ITO/α-NPD/Alq3/Al OLEDs. All experiments were carried out for the OLEDs with and without a pentacene interface layer. The I-V and EL-V measurements showed the decrease of operating voltage of EL, the DCM showed the lowering of inception voltage of carrier injection by inserting a pentacene interface layer. The TR-EFISHG measurement showed the faster accumulation of holes at the interface between the a-NPD and Alq3 layers, which resulted in the relaxation of electric field of a-NPD layer accomplished by the increase of the conductivity and the increase of the electric field in the Alq3 layer. We conclude that TR-EFISHG measurement is helpful for understanding I-V and EL-V characteristics, and can be combined with other methods to give significant information which are impacted by the interface layer.

9.
J Nanosci Nanotechnol ; 16(4): 3364-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451633

RESUMEN

By using electric field induced optical second harmonic generation (EFISHG) and current voltage (I-V) measurements, we studied the electrical transport mechanism of organic double-layer diodes with a structure of Au/N, N'-di-[(1-naphthyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (a-NPD)/poly(methyl methacrylate) (PMMA)/indium zinc oxide (IZO). Here the α-NPD is a carrier transport layer and the PMMA is an electrical insulating layer. The current level was very low, but the I-V characteristics showed a rectifying behavior. The EFISHG measurement selectively and directly probed the electric field across the α-NPD layer, and showed that the electric field across the a-NPD layer is completely relaxed owing to the charge accumulation at the a-NPD/PMMA interface in the region V > 0, whereas the carrier accumulation was not significant in the region V < 0. On the basis of these experimental results, we proposed a model of the rectification. Further, by coupling the I-V characteristics with the EFISHG measurement, the I-V characteristics of the diodes were well converted into the current-electric field (I-E) characteristics of the α-NPD layer and the PMMA layer. The I-E characteristics suggested the Schottky-type conduction governs the carrier transport. We conclude that the I-V measurement coupled with the EFISHG measurement is very useful to study carrier transport mechanism of the organic double-layer diodes.

10.
J Nanosci Nanotechnol ; 16(4): 3378-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451636

RESUMEN

Thermally stimulated current (TSC) measurement was employed to study the thermal stability of electro-optic (EO) polymers, i.e., guest/host polymer DR1/PMMA and side-chain polymer PMMA-co-DR1. Here the isothermal relaxation test showed that the relaxation time τ (85 °C) of side-chain polymer PMMA-co-DR1 is longer than that of guest/host polymer DR1/PMMA. TSC peaks appeared symmetrically in proportion to the poling electric field Ep, indicating that DR1 molecules make a dominant contribution to dipolar depolarization. Thermal sampling (TS) method showed that the activation energy of the DR1/PMMA is around 1 eV, while that of the PMMA-co-DR1 is distributed >1 eV. Results suggested that side-chain polymer is preferable to the guest/host polymer in the thermal stability. TSC measurement is helpful as a conventional method for studying the life time of EO polymers in terms of dipolar motion.

11.
J Nanosci Nanotechnol ; 16(4): 3388-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451638

RESUMEN

Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously.

12.
J Nanosci Nanotechnol ; 16(4): 3394-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27451639

RESUMEN

Asymmetric polymerization of polydiacetylene (PDA) from commercially available achiral derivative of diacetylene monomer using circularly polarized pulse laser is demonstrated. Chiral source was only circularly polarized laser, and irradiation of left- and right-circularly polarized light effectively promoted the polymerization of chiral PDAs with opposite handedness. Difference between the laser wavelength and the absorption peak of monomer suggested the contribution of the multiphoton excitation to the photo-polymerization. Laser power dependence of the polymerization rate indicated the possibility of three-photon polymerization.

13.
Sci Rep ; 6: 28493, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27335263

RESUMEN

Graphite basal surface is inert, and decomposition of n-alkanes on the graphite surface has not been discovered. We here report the evidence of decomposition of n-octanes on highly oriented pyrolytic graphite (HOPG) surface, heat-treated up to 1200 °C under high vacuum (10(-7) Pa), at near room temperatures. Using a temperature programmed desorption apparatus equipped with a quadrupole mass spectrometer showed the production of hydrogen molecules, methane, and ethane, suggesting that the protonation of n-octane takes place on graphite surface at near room temperature. It is known that acidic functional groups are terminated at edges on the air-cleaved HOPG surface and they increase their acidity via reactions with water. However, it is most unlikely that they protonate n-alkanes at near room temperature such as superacids. We anticipate that superacidic protons, which can protonate n-octanes, are produced on the graphite surface through a novel reaction mechanism.

14.
Light Sci Appl ; 5(3): e16040, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30167147

RESUMEN

We give a brief overview of the electric-field induced optical second-harmonic generation (EFISHG) technique that has been used to study the complex behaviors of organic-based devices. By analyzing EFISHG images of organic field-effect transistors, the in-plane two-dimensional distribution of the electric field in the channel can be evaluated. The susceptibility tensor of the organic semiconductor layer and the polarization of the incident light are considered to determine the electric field distribution. EFISHG imaging can effectively evaluate the distribution of the vectorial electric field in organic films by selecting a light polarization. With the time-resolved technique, measurement of the electric field originating from the injected carriers allows direct probing of the carrier motion under device operation, because the transient change of the electric field distribution reflects the carrier motion. Some applications of the EFISHG technique to organic electronic devices are reviewed.

15.
J Nanosci Nanotechnol ; 15(3): 1973-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26413610

RESUMEN

In this review, we discuss the Maxwell-Wagner (MW) effect model analysis of organic devices and time-resolved optical second harmonic generation (TR-EFISHG) measurement that is available for directly probing carrier motion in organic semiconductor devices. Using these, we show that organic field effect transistor as well organic double-layer device operation is analyzed well, and we can make clear the mechanism of these organic devices' operation. Finally, we conclude that the dielectric physics approach using the MW model analysis and the TR-EFISHG experiment is useful to study carrier transport mechanism of organic devices.


Asunto(s)
Movimiento (Física) , Dinámicas no Lineales , Fenómenos Ópticos , Compuestos Orgánicos , Semiconductores
16.
Sci Rep ; 5: 13019, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272162

RESUMEN

Contact electrification between two different materials is one of the oldest fields of study in solid-state physics. Here, we introduced an innovative system based on optical electric-field-induced second harmonic generation (EFI-SHG) technique that can directly monitor the dynamic performance of the contact electrification on the surface of polyimide film. After the contact, the EFI-SHG system visualized briefly three relaxations of the tribo-induced charges on the surface of a polyimide film, a fast relaxation within 3 min followed by two much slower relaxations, which were possibly related to different charge diffusion routes. The contact electrification under several special experimental conditions (wind, water and steam) was studied to demonstrate the high flexibility and material selectivity of the EFI-SHG. The EFI-SHG studies confirmed the motion of the water can remove the surface charge, while the appearance and the evaporation of a thin water layer cannot enhance the charge diffusion. We anticipate that this experimental technique will find a variety of applications in the field of contact electrification and the development of the recently invented triboelectric nano generator.

17.
Nano Lett ; 15(9): 5702-8, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26263025

RESUMEN

Details of a fast and sustainable bottom-up process to grow large area high quality graphene films without the aid of any catalyst are reported in this paper. We used Melaleuca alternifolia, a volatile natural extract from tea tree plant as the precursor. The as-fabricated graphene films yielded a stable contact angle of 135°, indicating their potential application in very high hydrophobic coatings. The electronic devices formed by sandwiching pentacene between graphene and aluminum films demonstrated memristive behavior, and hence, these graphene films could find use in nonvolatile memory devices also.

18.
Appl Biochem Biotechnol ; 174(3): 1201-13, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25205172

RESUMEN

A self-assembled monolayer (SAM) of thiol modified chitosan (SH-CHIT), with thioglycolic acid (TGA) as a modifier to bestow thiol groups, has been prepared onto gold (Au)-coated glass plates for fabrication of the nucleic acid biosensor. The chemical modification of CHIT via TGA has been evidenced by Fourier transform infrared spectroscopy (FT-IR) studies, and the biocompatibility studies reveal that CHIT retains its biocompatible nature after chemical modification. The electrochemical studies conducted onto SH-CHIT/Au electrode reveal that thiol modification in CHIT amino end enhances the electrochemical behavior indicating that it may be attributed to delocalization of electrons in CHIT skeleton that participates in the resonance process. The carboxyl group modified end of DNA probe has been immobilized onto SH-CHIT/Au electrode using N-ethyl-N'-(3-dimethylaminopropyl)carbodimide (EDC) and N-hydroxysuccinimide (NHS) chemistry for detection of complementary, one-base mismatch and non-complementary sequence using electrochemical and optical studies for Mycobacterium tuberculosis detection. It has been found that DNA-SH-CHIT/Au bioelectrode can specifically detect 0.01 µM of target DNA concentration with sensitivity of 1.69 × 10(-6) A µM(-1).


Asunto(s)
Técnicas Biosensibles , ADN/aislamiento & purificación , Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis/diagnóstico , Quitosano/química , ADN/química , ADN/genética , Oro/química , Humanos , Mycobacterium tuberculosis/genética , Espectroscopía Infrarroja por Transformada de Fourier , Tioglicolatos/química , Tuberculosis/genética
19.
Nanoscale ; 6(2): 688-92, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24271150

RESUMEN

Li doped NiO nanowires with a diameter smaller than 100 nm were synthesized by electrospinning. The nanowires exhibit p-type characteristics with improved electrical conductivity through Li doping. Moreover, an enhanced gating effect was obtained in Li-NiO-nanowire-based field effect transistors (FETs), which hold great potential in transparent optoelectronics.

20.
Sci Technol Adv Mater ; 15(3): 035006, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27877682

RESUMEN

An environmentally friendly solid-state quantum dot sensitized solar cell (ss-QDSSC) was prepared by combining colloidal SnS QDs as the sensitizer and organic hole scavenger spiro-OMeTAD (2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)9,9'-spirobifluorene) as the solid-state electrolyte, and the energy alignment of SnS and TiO2 was investigated. The bandgap of colloidal SnS QDs increased with decreasing particle size from 14 to 4 nm due to an upshift of the conduction band and a downshift of the valence band. In TiO2/SnS heterojunctions, the conduction band minimum (CBM) difference between TiO2 and SnS was as large as ∼0.8 eV; this difference decreased with decreasing particle size, but was sufficient for electron injection from SnS nanoparticles of any size into TiO2. Meanwhile, the sensitizer regeneration driving force, that is, the difference between the valence band maximum (VBM) of SnS and the work function of the electrolyte, showed an opposite behaviour with the SnS size due to a downward shift of the SnS VB. Consequently, smaller SnS QDs should result in a more efficient charge transfer in heterojunctions, revealing the advantages of QDs vs larger particles as sensitizers. This prediction was confirmed by the improved photovoltaic performance of ss-QDSSCs modified with SnS nanoparticles, which peaked for 5-6 nm sized SnS nanoparticles due to the balance between electron injection and sunlight absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...