Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Adv ; 10(31): eado1502, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083606

RESUMEN

In noncentrosymmetric superconductors, superconducting and normal conductions can interchange on the basis of the current flow direction. This effect is termed a superconducting diode effect (SDE), which is a focal point of recent research. The broken inversion and time-reversal symmetry is believed to be the requirements of SDE, but their intrinsic role has remained elusive. Here, we report strain-controlled SDEs in a layered trigonal superconductor, PbTaSe2. The SDE was found exclusively in a strained device with its absence in an unstrained device despite that it is allowed in unstrained trigonal structure. Moreover, the zero-field or magnetic field-even (magnetic field-odd) SDE is observed when the strain and current are along armchair (zigzag) direction The results unambiguously demonstrate the intrinsic SDE under time-reversal symmetry and the critical role of strain-induced electric polarization.

2.
ACS Appl Mater Interfaces ; 16(19): 24889-24898, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700233

RESUMEN

The high surface-area-to-volume ratio of colloidal quantum dots (QDs) positions them as promising materials for high-performance supercapacitor electrodes. However, the challenge lies in achieving a highly accessible surface area, while maintaining good electrical conductivity. An efficient supercapacitor demands a dense yet highly porous structure that facilitates efficient ion-surface interactions and supports fast charge mobility. Here we demonstrate the successful development of additive-free ultrahigh energy density electric double-layer capacitors based on quantum dot hierarchical nanopore (QDHN) structures. Lead sulfide QDs are assembled into QDHN structures that strike a balance between electrical conductivity and efficient ion diffusion by employing meticulous control over inter-QD distances without any additives. Using ionic liquid as the electrolyte, the high-voltage ultrathin-film microsupercapacitors achieve a remarkable combination of volumetric energy density (95.6 mWh cm-3) and power density (13.5 W cm-3). This achievement is attributed to the intrinsic capability of QDHN structures to accumulate charge carriers efficiently. These findings introduce innovative concepts for leveraging colloidal nanomaterials in the advancement of high-performance energy storage devices.

3.
Sci Adv ; 10(15): eadk1415, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608018

RESUMEN

Magnetic semimetals form an attractive class of materials because of the nontrivial contributions of itinerant electrons to magnetism. Because of their relatively low-carrier-density nature, a doping level of those materials could be largely tuned by a gating technique. Here, we demonstrate gate-tunable ferromagnetism in an emergent van der Waals magnetic semimetal Cr3Te4 based on an ion-gating technique. Upon doping electrons into the system, the Curie temperature (TC) sharply increases, approaching near to room temperature, and then decreases to some extent. This non-monotonous variation of TC accompanies the switching of the magnetic anisotropy, synchronously followed by the sign changes of the ordinary and anomalous Hall effects. Those results clearly elucidate that the magnetism in Cr3Te4 should be governed by its semimetallic band nature.

4.
Adv Mater ; 36(21): e2312781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38533684

RESUMEN

Multiferroic materials have attracted considerable attention owing to their unique magnetoelectric or magnetooptical properties. The recent discovery of few-layer van der Waals multiferroic crystals provides a new research direction for controlling the multiferroic properties in the atomic layer limit. However, research on few-layer multiferroic crystals is limited and the effect of thickness-dependent symmetries on those properties is less explored. In this study, the symmetries and magnetoelectric responses of van der Waals multiferroic CuCrP2S6 are investigated by optical second harmonic generation (SHG). Structural and magnetic phase transitions are successfully probed by the temperature-dependent SHG signals, revealing significant changes by applying the magnetic field reflecting the magnetoelectric effect. Moreover, it is found that symmetries and resultant magnetoelectric responses can be modulated by the number of layers. These results offer a new principle of controlling the multiferroicity and indicate that 2D van der Waals multiferroic material is a promising building block for functional nanodevices.

5.
Nat Commun ; 14(1): 7486, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980351

RESUMEN

Colloidal quantum dots are sub-10 nm semiconductors treated with liquid processes, rendering them attractive candidates for single-electron transistors operating at high temperatures. However, there have been few reports on single-electron transistors using colloidal quantum dots due to the difficulty in fabrication. In this work, we fabricated single-electron transistors using single oleic acid-capped PbS quantum dot coupled to nanogap metal electrodes and measured single-electron tunneling. We observed dot size-dependent carrier transport, orbital-dependent electron charging energy and conductance, electric field modulation of the electron confinement potential, and the Kondo effect, which provide nanoscopic insights into carrier transport through single colloidal quantum dots. Moreover, the large charging energy in small quantum dots enables single-electron transistor operation even at room temperature. These findings, as well as the commercial availability and high stability, make PbS quantum dots promising for the development of quantum information and optoelectronic devices, particularly room-temperature single-electron transistors with excellent optical properties.

6.
Sci Adv ; 9(36): eadf6758, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683003

RESUMEN

Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsxP1-x under hydrostatic pressure. We demonstrate how this turns these compounds into tunable two-dimensional superconductors with a dome-shaped phase diagram even in the bulk limit. This peculiar behavior is shown to result from an unconventional valley-dimensionality locking mechanism, driven by a delicate competition between three-dimensional hole-type and two-dimensional electron-type energy pockets spatially separated in momentum space. The resulting dimensionality crossover is further discussed to be systematically controllable by pressure and stoichiometry tuning. Our findings pave a unique way to realize and control superconducting phases with special pairing and dimensional orders.

7.
Nat Commun ; 14(1): 5568, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689758

RESUMEN

Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C2 symmetry as a gate medium which can break the original threefold-rotational C3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.

8.
Nat Nanotechnol ; 18(8): 867-874, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37322146

RESUMEN

The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The theoretical rationale is that the BCD can be generated at certain symmetry-mismatched van der Waals heterointerfaces even though each material has no BCD in its band structure. However, experimental confirmation of such a BCD induced via breaking of the interfacial symmetry remains elusive. Here we demonstrate a universal strategy for BCD generation and observe BCD-induced gate-tunable spin-polarized photocurrent at WSe2/SiP interfaces. Although the rotational symmetry of each material prohibits the generation of spin photocurrent under normal incidence of light, we surprisingly observe a direction-selective spin photocurrent at the WSe2/SiP heterointerface with a twist angle of 0°, whose amplitude is electrically tunable with the BCD magnitude. Our results highlight a BCD-spin-valley correlation and provide a universal approach for engineering the geometric features of twisted heterointerfaces.

9.
Nat Commun ; 14(1): 2670, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236922

RESUMEN

Semiconducting colloidal quantum dots and their assemblies exhibit superior optical properties owing to the quantum confinement effect. Thus, they are attracting tremendous interest from fundamental research to commercial applications. However, the electrical conducting properties remain detrimental predominantly due to the orientational disorder of quantum dots in the assembly. Here we report high conductivity and the consequent metallic behaviour of semiconducting colloidal quantum dots of lead sulphide. Precise facet orientation control to forming highly-ordered quasi-2-dimensional epitaxially-connected quantum dot superlattices is vital for high conductivity. The intrinsically high mobility over 10 cm2 V-1 s-1 and temperature-independent behaviour proved the high potential of semiconductor quantum dots for electrical conducting properties. Furthermore, the continuously tunable subband filling will enable quantum dot superlattices to be a future platform for emerging physical properties investigations, such as strongly correlated and topological states, as demonstrated in the moiré superlattices of twisted bilayer graphene.

10.
Nat Nanotechnol ; 18(1): 36-41, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36411374

RESUMEN

Given its innate coupling with wavefunction geometry in solids and its potential to boost the solar energy conversion efficiency, the bulk photovoltaic effect (BPVE) has been of considerable interest in the past decade1-14. Initially discovered and developed in ferroelectric oxide materials2, the BPVE has now been explored in a wide range of emerging materials, such as Weyl semimetals9,10, van der Waals nanomaterials11,12,14, oxide superlattices15, halide perovskites16, organics17, bulk Rashba semiconductors18 and others. However, a feasible experimental approach to optimize the photovoltaic performance is lacking. Here we show that strain-induced polarization can significantly enhance the BPVE in non-centrosymmetric rhombohedral-type MoS2 multilayer flakes (that is, 3R-MoS2). This polarization-enhanced BPVE, termed the piezophotovoltaic effect, exhibits distinctive crystallographic orientation dependence, in that the enhancement mainly manifests in the armchair direction of the 3R-MoS2 lattice while remaining largely intact in the zigzag direction. Moreover, the photocurrent increases by over two orders of magnitude when an in-plane tensile strain of ~0.2% is applied, rivalling that of state-of-the-art materials. This work unravels the potential of strain engineering in boosting the photovoltaic performance, which could potentially promote the exploration of novel photoelectric processes in strained two-dimensional layered materials and their van der Waals heterostructures.

11.
Nano Lett ; 22(24): 9964-9971, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516275

RESUMEN

In a conventional magnetic material, a long-range magnetic order develops in three dimensions, and reducing a layer number weakens its magnetism. Here we demonstrate anomalous layer-number-independent ferromagnetism down to the two-dimensional (2D) limit in a metastable phase of Cr3Te4. We fabricated Cr3Te4 thin films by molecular-beam epitaxy and found that Cr3Te4 could host two distinct ferromagnetic phases characterized with different Curie temperatures (TC). One is the bulk-like "high-TC phase" showing room-temperature ferromagnetism, which is consistent with previous studies. The other is the metastable "low-TC phase" with TC ≈ 160 K, which exhibits a layer-number-independent TC down to the 2D limit in marked contrast with the conventional high-TC phase, demonstrating a purely 2D nature of its ferromagnetism. Such significant differences between two distinct phases could be attributed to a small variation in the doping level, making this material attractive for future ultracompact spintronics applications with potential gate-tunable room-temperature 2D ferromagnetism.

12.
Nat Commun ; 13(1): 6986, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385110

RESUMEN

The Bardeen-Cooper-Schrieffer (BCS) condensation and Bose-Einstein condensation (BEC) are the two limiting ground states of paired Fermion systems, and the crossover between these two limits has been a source of excitement for both fields of high temperature superconductivity and cold atom superfluidity. For superconductors, ultra-low doping systems like graphene and LixZrNCl successfully approached the crossover starting from the BCS-side. These superconductors offer new opportunities to clarify the nature of charged-particles transport towards the BEC regime. Here we report the study of vortex dynamics within the crossover using their Hall effect as a probe in LixZrNCl. We observed a systematic enhancement of the Hall angle towards the BCS-BEC crossover, which was qualitatively reproduced by the phenomenological time-dependent Ginzburg-Landau (TDGL) theory. LixZrNCl exhibits a band structure free from various electronic instabilities, allowing us to achieve a comprehensive understanding of the vortex Hall effect and thereby propose a global picture of vortex dynamics within the crossover. These results demonstrate that gate-controlled superconductors are ideal platforms towards investigations of unexplored properties in BEC superconductors.

13.
Nat Commun ; 13(1): 5129, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109495

RESUMEN

A proximity effect at a van der Waals (vdW) interface enables creation of an emergent quantum electronic ground state. Here we demonstrate that an originally superconducting two-dimensional (2D) NbSe2 forms a ferromagnetic ground state with spontaneous spin polarization at a vdW interface with a 2D ferromagnet V5Se8. We investigated the anomalous Hall effect (AHE) of the NbSe2/V5Se8 magnetic vdW heterostructures, and found that the sign of the AHE was reversed as the number of the V5Se8 layer was thinned down to the monolayer limit. Interestingly, the AHE signal of those samples was enhanced with the in-plane magnetic fields, suggesting an additional contribution to the AHE signal other than magnetization. This unusual behavior is well reproduced by band structure calculations, where the emergence of the Berry curvature along the spin-degenerate nodal lines in 2D NbSe2 by the in-plane magnetization plays a key role, unveiling a unique interplay between magnetism and Zeeman-type spin-orbit interaction in a non-centrosymmetric 2D quantum material.

14.
Adv Mater ; 34(27): e2201209, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35448916

RESUMEN

The technological appeal of van der Waals ferromagnetic materials is the ability to control magnetism under external fields with desired thickness toward novel spintronic applications. For practically useful devices, ferromagnetism above room temperature or tunable magnetic anisotropy is highly demanded but remains challenging. To date, only a few layered materials exhibit unambiguous ferromagnetic ordering at room temperature via gating techniques or interface engineering. Here, it is demonstrated that the magnetic anisotropy control and dramatic modulation of Curie temperature (Tc ) up to 400 K are realized in layered Fe5 GeTe2 via the high-pressure diamond-anvil-cell technique. Magnetic phases manifesting with in-plane anisotropic, out-of-plane anisotropic and nearly isotropic magnetic states can be tuned in a controllable way, depicted by the phase diagram with a maximum Tc up to 360 K. Remarkably, the Tc can be gradually enhanced to above 400 K owing to the Fermi surface evolution during a pressure loading-deloading process. Such an observation sheds light on the understanding and control of emergent magnetic states in practical spintronic applications.

15.
Nat Commun ; 13(1): 1659, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351870

RESUMEN

Nonreciprocal or even-order nonlinear responses in symmetry-broken systems are powerful probes of emergent properties in quantum materials, including superconductors, magnets, and topological materials. Recently, vortex matter has been recognized as a key ingredient of giant nonlinear responses in superconductors with broken inversion symmetry. However, nonlinear effects have been probed as excess voltage only under broken time-reversal symmetry. In this study, we report second harmonic transport under time-reversal symmetry in the noncentrosymmetric trigonal superconductor PbTaSe2. The magnitude of anomalous nonlinear transport is two orders of magnitude larger than those in the normal state, and the directional dependence of nonlinear signals are fully consistent with crystal symmetry. The enhanced nonlinearity is semiquantitatively explained by the asymmetric Hall effect of vortex-antivortex string pairs in noncentrosymmetric systems. This study enriches the literature on nonlinear phenomena by elucidating quantum transport in noncentrosymmetric superconductors.

16.
Natl Sci Rev ; 8(3): nwaa219, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34691597
17.
Nanoscale ; 13(33): 14001-14007, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34477680

RESUMEN

PbS square superstructures are formed by the oriented assembly of PbS quantum dots (QDs), reflecting the facet structures of each QD. In the square assembly, the quantum dots are highly oriented, in sharp contrast to the conventional hexagonal QD assemblies, in which the orientation of QDs is highly disordered, and each QD is connected through ligand molecules. Here, we measured the transport properties of the oriented assembly of PbS square superstructures. The combined electrochemical doping studies by electric double layer transistor (EDLT) and spectroelectrochemistry showed that more than fourteen electrons per quantum dot are introduced. Furthermore, we proved that the lowest conduction band is formed by the quasi-fourth degenerate quantized (1Se) level in the PbS QD square superstructures.

18.
Nat Commun ; 12(1): 4201, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234143

RESUMEN

Material structures containing tetrahedral FeAs bonds, depending on their density and geometrical distribution, can host several competing quantum ground states ranging from superconductivity to ferromagnetism. Here we examine structures of quasi two-dimensional (2D) layers of tetrahedral Fe-As bonds embedded with a regular interval in a semiconductor InAs matrix, which resembles the crystal structure of Fe-based superconductors. Contrary to the case of Fe-based pnictides, these FeAs/InAs superlattices (SLs) exhibit ferromagnetism, whose Curie temperature (TC) increases rapidly with decreasing the InAs interval thickness tInAs (TC ∝ tInAs-3), and an extremely large magnetoresistance up to 500% that is tunable by a gate voltage. Our first principles calculations reveal the important role of disordered positions of Fe atoms in the establishment of ferromagnetism in these quasi-2D FeAs-based SLs. These unique features mark the FeAs/InAs SLs as promising structures for spintronic applications.

19.
Nano Lett ; 21(12): 4937-4943, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34114816

RESUMEN

Distinct from carbon nanotubes, transition-metal dichalcogenide (TMD) nanotubes are noncentrosymmetric and polar and can exhibit some intriguing phenomena such as nonreciprocal superconductivity, chiral shift current, bulk photovoltaic effect, and exciton-polaritons. However, basic characterizations of individual TMD nanotubes are still quite limited, and much remains unclear about their structural chirality and electronic properties. Here we report an optical second-harmonic generation (SHG) study on multiwalled WS2 nanotubes on a single-tube level. As it is highly sensitive to the crystallographic symmetry, SHG microscopy unveiled multiple structural domains within a single WS2 nanotube, which are otherwise hidden under conventional white-light optical microscopy. Moreover, the polarization-resolved SHG anisotropy patterns revealed that different domains on the same tube can be of different chirality. In addition, we observed the excitonic states of individual WS2 nanotubes via SHG excitation spectroscopy, which were otherwise difficult to acquire due to the indirect band gap of the material.

20.
Science ; 372(6537): 68-72, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795452

RESUMEN

Van der Waals interfaces can be formed by layer stacking without regard to lattice constants or symmetries of individual building blocks. We engineered the symmetry of a van der Waals interface of tungsten selenide and black phosphorus and realized in-plane electronic polarization that led to the emergence of a spontaneous photovoltaic effect. Spontaneous photocurrent was observed along the polar direction and was absent in the direction perpendicular to it. The observed spontaneous photocurrent was explained by a quantum-mechanical shift current that reflects the geometrical and topological electronic nature of this emergent interface. The present results offer a simple guideline for symmetry engineering that is applicable to a variety of van der Waals interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA