Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 321: 121598, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963720

RESUMEN

AIMS: A peptide mimetic of a collagen-derived matricryptin (p1159) was shown to reduce left ventricular (LV) dilation and fibrosis after 7 days delivery in a mouse model of myocardial infarction (MI). This suggested p1159 long-term treatment post-MI could have beneficial effects and reduce/prevent adverse LV remodeling. This study aimed to test the potential of p1159 to reduce adverse cardiac remodeling in a chronic MI model and to elucidate p1159 mode-of-action. MATERIALS AND METHODS: Using a permanent occlusion MI rodent model, animals received p1159 or vehicle solution up to 28 days. We assessed peptide treatment effects on scar composition and structure and on systolic function. To assess peptide effects on scar vascularization, a cohort of mice were injected with Griffonia simplicifolia isolectin-B4. To investigate p1159 mode-of-action, LV fibroblasts from naïve animals were treated with increasing doses of p1159. KEY FINDINGS: Matricryptin p1159 significantly improved systolic function post-MI (2-fold greater EF compared to controls) by reducing left ventricular dilation and inducing the formation of a compliant and organized infarct scar, which promoted LV contractility and preserved the structural integrity of the heart. Specifically, infarcted scars from p1159-treated animals displayed collagen fibers aligned parallel to the epicardium, to resist circumferential stretching, with reduced levels of cross-linking, and improved tissue perfusion. In addition, we found that p1159 increases cardiac fibroblast migration by activating RhoA pathways via the membrane receptor integrin α4. SIGNIFICANCE: Our data indicate p1159 treatment reduced adverse LV remodeling post-MI by modulating the deposition, arrangement, and perfusion of the fibrotic scar.


Asunto(s)
Cicatriz , Infarto del Miocardio , Ratones , Animales , Cicatriz/tratamiento farmacológico , Cicatriz/metabolismo , Colágeno/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Remodelación Ventricular , Fibrosis , Péptidos/metabolismo , Función Ventricular Izquierda
2.
Biochem Biophys Res Commun ; 529(4): 1080-1085, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819568

RESUMEN

Morphine is routinely used for pain management in heart failure patients. However, extended morphine exposure associates with major adverse cardiovascular events. Reports link the dopamine receptor D2-family with morphine-induced nociception modulation. This study first assessed whether morphine induces cardiac remodeling in healthy mice, then whether DRD3 agonist (DRD3ag, D2-family member) adjunct therapy prevents morphine-induced cardiac remodeling. Mice received morphine (2 mg/kg/day i. p.) for 7 days (D7) and were either euthanized at D7 or kept 7 more days without morphine (i.e. withdrawal period, D8-D14): G1, morphine; G2, morphine/DRD3ag; G3, morphine + withdrawal; G4, morphine/DRD3ag + withdrawal; G5, morphine + withdrawal/DRD3ag. A separate cohort of animals were used as naïve tissues. We evaluated functional and molecular parameters of cardiac remodeling. Although we did not observe significant differences in systolic function, morphine induced both interstitial fibrosis and cardiomyocyte hypertrophy. Interestingly, DRD3ag abolished these effects. Compared to naïve tissues, collagen 1 increased after withdrawal in G3 and G4 and collagen 3 increased in G1-G4 but at higher levels in G1 and G2. Only G5 did not show collagen differences compared to naïve, suggesting DRD3ag treatment during withdrawal may be beneficial and prevent morphine-induced fibrosis. Smad2/3 phosphorylation increased during withdrawal, indicating a likely upstream pathway for the observed morphine-induced fibrosis. Overall, our data suggest that DRD3ag adjunct therapy decreases morphine-induced adverse cardiac remodeling.


Asunto(s)
Morfina/efectos adversos , Miocardio/patología , Pramipexol/farmacología , Receptores de Dopamina D3/agonistas , Animales , Colágeno/metabolismo , Fibrosis , Hipertrofia , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sístole/efectos de los fármacos
3.
Sci Rep ; 10(1): 3417, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32099031

RESUMEN

Insulin resistance increases patients' risk of developing type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH) and a host of other comorbidities including cardiovascular disease and cancer. At the molecular level, insulin exerts its function through the insulin receptor (IR), a transmembrane receptor tyrosine kinase. Data from human genetic studies have shown that Grb14 functions as a negative modulator of IR activity, and the germline Grb14-knockout (KO) mice have improved insulin signaling in liver and skeletal muscle. Here, we show that Grb14 knockdown in liver, white adipose tissues, and heart with an AAV-shRNA (Grb14-shRNA) improves glucose homeostasis in diet-induced obese (DIO) mice. A previous report has shown that germline deletion of Grb14 in mice results in cardiac hypertrophy and impaired systolic function, which could severely limit the therapeutic potential of targeting Grb14. In this report, we demonstrate that there are no significant changes in cardiac function as measured by echocardiography in the Grb14-knockdown mice fed a high-fat diet for a period of four months. While additional studies are needed to further confirm the efficacy and to de-risk potential negative cardiac effects in preclinical models, our data support the therapeutic strategy of inhibiting Grb14 to treat diabetes and related conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Técnicas de Silenciamiento del Gen , Insulina/genética , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo
4.
J Mol Cell Cardiol ; 139: 62-74, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31978395

RESUMEN

Age-related remodeling of the heart causes structural and functional changes in the left ventricle (LV) that are associated with a high index of morbidities and mortality worldwide. Some cardiac pathologies in the elderly population vary between genders revealing that cardiac remodeling during aging may be sex-dependent. Herein, we analyzed the effects of cardiac aging in male and female C57Bl/6 mice in four age groups, 3, 6, 12, and 18 month old (n = 6-12 animals/sex/age), to elucidate which age-related characteristics of LV remodeling are sex-specific. We focused particularly in parameters associated with age-dependent remodeling of the LV extracellular matrix (ECM) that are involved in collagen metabolism. LV function and anatomical structure were assessed both by conventional echocardiography and speckle tracking echocardiography (STE). We then measured ECM proteins that directly affect LV contractility and remodeling. All data were analyzed across ages and between sexes and were directly linked to LV functional changes. Echocardiography confirmed an age-dependent decrease in chamber volumes and LV internal diameters, indicative of concentric remodeling. As in humans, animals displayed preserved ejection fraction with age. Notably, changes to chamber dimensions and volumes were temporally distinct between sexes. Complementary to the traditional echocardiography, STE revealed that circumferential strain rate declined in 18 month old females, compared to younger animals, but not in males, suggesting STE as an earlier indicator for changes in cardiac function between sexes. Age-dependent collagen deposition and expression in the endocardium did not differ between sexes; however, other factors involved in collagen metabolism were sex-specific. Specifically, while decorin, osteopontin, Cthrc1, and Ddr1 expression were age-dependent but sex-independent, periostin, lysyl oxidase, and Mrc2 displayed age-dependent and sex-specific differences. Moreover, our data also suggest that with age males and females have distinct TGFß signaling pathways. Overall, our results give evidence of sex-specific molecular changes during physiological cardiac remodeling that associate with age-dependent structural and functional dysfunction. These data highlight the importance of including sex-differences analysis when studying cardiac aging.


Asunto(s)
Matriz Extracelular/metabolismo , Corazón/fisiopatología , Caracteres Sexuales , Animales , Peso Corporal , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Colágeno/metabolismo , Electrocardiografía , Femenino , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Homeostasis , Modelos Lineales , Masculino , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteoglicanos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular
5.
ACS Omega ; 4(1): 1272-1280, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30729226

RESUMEN

We hypothesized that identifying plasma glycoproteins that predict the development of heart failure following myocardial infarction (MI) could help to stratify subjects at risk. Plasma collected at visit 2 (2005-2008) from an MI subset of Jackson Heart Study participants underwent glycoproteomics and was grouped by the outcome: (1) heart failure hospitalization after visit 2 (n = 15) and (2) without hospitalization by 2012 (n = 45). Proteins were mapped for biological processes and functional pathways using Ingenuity Pathway Analysis and linked to clinical characteristics. A total of 198 glycopeptides corresponding to 88 proteins were identified (data available via ProteomeXchange with identifier PXD009870). Of these, 14 glycopeptides were significantly different between MI and MI + HF groups and corresponded to apolipoprotein (Apo) F, transthyretin, Apo C-IV, prostaglandin-D2 synthase, complement C9, and CD59 (p < 0.05 for all). All proteins were elevated in the MI + HF group, except CD59, which was lower. Four canonical pathways were upregulated in the MI + HF group (p < 0.05 for all): acute phase response, liver X receptor/retinoid X receptor, and macrophage reactive oxygen species generation. The coagulation pathway was significantly downregulated in the MI + HF group (p < 0.05). Even after adjustment for age and sex, Apo F was associated with the increased risk for heart failure (OR = 21.84; 95% CI 3.20-149.14). In conclusion, glycoproteomic profiling provided candidate early MI predictors of later progression to heart failure.

6.
Cardiovasc Res ; 115(2): 395-408, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169632

RESUMEN

Aims: Macrophage phagocytosis of dead cells is a prerequisite for inflammation resolution. Because CXCL4 induces macrophage phagocytosis in vitro, we examined the impact of exogenous CXCL4 infusion on cardiac wound healing and macrophage phagocytosis following myocardial infarction (MI). Methods and results: CXCL4 expression significantly increased in the infarct region beginning at Day 3 post-MI, and macrophages were the predominant source. Adult male C57BL/6J mice were subjected to coronary artery occlusion, and MI mice were randomly infused with recombinant mouse CXCL4 or saline beginning at 24 h post-MI by mini-pump infusion. Compared with saline controls, CXCL4 infusion dramatically reduced 7 day post-MI survival [10% (3/30) for CXCL4 vs. 47% (7/15) for saline, P < 0.05] as a result of acute congestive heart failure. By echocardiography, CXCL4 significantly increased left ventricular (LV) volumes and dimensions at Day 5 post-MI (all P < 0.05), despite similar infarct areas compared with saline controls. While macrophage numbers were similar at Day 5 post-MI, CXCL4 infusion increased Ccr4 and Itgb4 and decreased Adamts8 gene levels in the infarct region, all of which linked to CXCL4-mediated cardiac dilation. Isolated Day 5 post-MI macrophages exhibited comparable levels of M1 and M4 markers between saline and CXCL4 groups. Interestingly, by both ex vivo and in vitro phagocytosis assays, CXCL4 reduced macrophage phagocytic capacity, which was connected to decreased levels of the phagocytosis receptor CD36. In vitro, a CD36 neutralizing antibody (CD36Ab) significantly inhibited macrophage phagocytic capacity. The combination of CXCL4 and CD36Ab did not have an additive effect, indicating that CXCL4 regulated phagocytosis through CD36 signalling. CXCL4 infusion significantly elevated infarct matrix metalloproteinase (MMP)-9 levels at Day 5 post-MI, and MMP-9 can cleave CD36 as a down-regulation mechanism. Conclusion: CXCL4 infusion impaired macrophage phagocytic capacity by reducing CD36 levels through MMP-9 dependent and independent signalling, leading to higher mortality and LV dilation.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Miocardio/metabolismo , Fagocitosis/efectos de los fármacos , Factor Plaquetario 4/toxicidad , Proteínas ADAMTS/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Infusiones Subcutáneas , Integrina beta4/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Factor Plaquetario 4/administración & dosificación , Factor Plaquetario 4/metabolismo , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
7.
Basic Res Cardiol ; 113(5): 40, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30132266

RESUMEN

Sex differences in heart failure development following myocardial infarction (MI) are not fully understood. We hypothesized that differential MI signaling could explain variations in outcomes. Analysis of the mouse heart attack research tool 1.0 (422 mice; young = 5.4 ± 0.1; old = 23.3 ± 0.1 months of age) was used to dissect MI signaling pathways, which was validated in a new cohort of mice (4.8 ± 0.2 months of age); and substantiated in humans. Plasma collected at visit 2 from the MI subset of the Jackson Heart Study (JHS; a community-based study consisting of middle aged and older adults of African ancestry) underwent glycoproteomics grouped by outcome: (1) heart failure hospitalization after visit 2 (n = 3 men/12 women) and (2) without hospitalization through 2012 (n = 24 men/21 women). Compared to young male mice, the infarct region of young females had fewer, but more efficient tissue clearing neutrophils with reduced pro-inflammatory gene expression. Apolipoprotein (Apo) F, which acts upstream of the liver X receptors/retinoid X receptor (LXR/RXR) pathway, was elevated in the day 7 infarcts of old mice compared to young controls and was increased in both men and women with heart failure. In vitro, Apo F stimulated CD36 and peroxisome proliferator-activated receptor (PPAR)γ activation in male neutrophils to turn off NF-κB activation and stimulate LXR/RXR signaling to initiate resolution. Female neutrophils were desensitized to Apo F and instead relied on thrombospondin-1 stimulation of CD36 to upregulate AMP-activated protein kinase, resulting in an overall better wound healing strategy. With age, female mice were desensitized to LXR/RXR signaling, resulting in enhanced interleukin-6 activation, a finding replicated in the JHS community cohort. This is the first report to uncover sex differences in post-MI neutrophil signaling that yielded better outcomes in young females and worse outcomes with age.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Receptores X del Hígado/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Neutrófilos/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal , Función Ventricular Izquierda , Remodelación Ventricular , Adulto , Negro o Afroamericano , Factores de Edad , Anciano , Anciano de 80 o más Años , Animales , Bases de Datos Factuales , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/etnología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Infarto del Miocardio/etnología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Fenotipo , Pronóstico , Factores Sexuales , Estados Unidos/epidemiología , Adulto Joven
8.
Am J Physiol Heart Circ Physiol ; 315(3): H522-H530, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29775405

RESUMEN

The generation of big data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large data set of over 10 yr of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling after myocardial infarction (MI) in mice. We designed the mHART REDCap database using our own data to integrate cardiovascular community participation. We generated physiological, biochemical, cellular, and proteomic outputs from plasma and left ventricles obtained from post-MI and no-MI (naïve) control groups. We included both male and female mice ranging in age from 3 to 36 mo old. After variable collection, data underwent quality assessment for data curation (e.g., eliminate technical errors, check for completeness, remove duplicates, and define terms). Currently, mHART 1.0 contains >888,000 data points and includes results from >2,100 unique mice. Database performance was tested, and an example is provided to illustrate database utility. This report explains how the first version of the mHART database was established and provides researchers with a standard framework to aid in the integration of their data into our database or in the development of a similar database. NEW & NOTEWORTHY The Mouse Heart Attack Research Tool combines >888,000 cardiovascular data points from >2,100 mice. We provide this large data set as a REDCap database to generate novel hypotheses and identify new predictive markers of adverse left ventricular remodeling following myocardial infarction in mice and provide examples of use. The Mouse Heart Attack Research Tool is the first database of this size that integrates data sets across platforms that include genomic, proteomic, histological, and physiological data.


Asunto(s)
Bases de Datos Factuales , Infarto del Miocardio/patología , Programas Informáticos , Animales , Femenino , Masculino , Ratones , Infarto del Miocardio/fisiopatología , Remodelación Ventricular
9.
Am J Physiol Heart Circ Physiol ; 314(2): H224-H235, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030341

RESUMEN

Matrix metalloproteinase (MMP)-9 increases in the myocardium with advanced age and after myocardial infarction (MI). Because young transgenic (TG) mice overexpressing human MMP-9 only in macrophages show better outcomes post-MI, whereas aged TG mice show a worse aging phenotype, we wanted to evaluate the effect of aging superimposed on MI to see if the detrimental effect of aging counteracted the benefits of macrophage MMP-9 overexpression. We used 17- to 28-mo-old male and female C57BL/6J wild-type (WT) and TG mice ( n = 10-21 mice/group) to evaluate the effects of aging superimposed on MI. Despite similar infarct areas and mortality rates at day 7 post-MI, aging TG mice showed improved diastolic properties and remodeling index compared with WT mice (both P < 0.05). Macrophage numbers were higher in TG than WT mice at days 0 and 7 post-MI, and the post-MI increase was due to elevated cluster of differentiation 18 protein levels (all P < 0.05). RNA sequencing analysis of cardiac macrophages isolated from day 7 post-MI infarcts identified 1,276 statistically different (all P < 0.05) genes (994 increased and 282 decreased in TG mice). Reduced expression of vascular endothelial growth factor A, platelet-derived growth factor subunit A, and transforming growth factor-ß3, along with elevated expression of tissue inhibitor of MMP-4, in macrophages revealed mechanisms of indirect downstream effects on fibroblasts and neovascularization. While collagen accumulation was enhanced in TG mice compared with WT mice at days 0 and 7 post-MI ( P < 0.05 for both), the post-MI collagen cross-linking ratio was higher in WT mice ( P < 0.05), consistent with increased diastolic volumes. Vessel numbers [by Griffonia ( Bandeiraea) simplicifolia lectin I staining] were decreased in TG mice compared with WT mice at days 0 and 7 post-MI ( P < 0.05 for both). In conclusion, macrophage-derived MMP-9 improved post-MI cardiac wound healing through direct and indirect mechanisms to improve diastolic physiology and remodeling. NEW & NOTEWORTHY Aging mice with macrophage overexpression of matrix metalloproteinase-9 have increased macrophage numbers 7 days after myocardial infarction, resulting in improved diastolic physiology and left ventricular remodeling through effects on cardiac wound healing.


Asunto(s)
Macrófagos/enzimología , Metaloproteinasa 9 de la Matriz/biosíntesis , Infarto del Miocardio/enzimología , Miocardio/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Cicatrización de Heridas , Factores de Edad , Envejecimiento , Animales , Colágeno/metabolismo , Diástole , Modelos Animales de Enfermedad , Inducción Enzimática , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Mediadores de Inflamación/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Neovascularización Fisiológica , Fenotipo
10.
JCI Insight ; 2(18)2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28931761

RESUMEN

Chronic inflammatory diseases, such as periodontal disease, associate with adverse wound healing in response to myocardial infarction (MI). The goal of this study was to elucidate the molecular basis for impaired cardiac wound healing in the setting of periodontal-induced chronic inflammation. Causal network analysis of 168 inflammatory and extracellular matrix genes revealed that chronic inflammation induced by a subseptic dose of Porphyromonas gingivalis lipopolysaccharide (LPS) exacerbated infarct expression of the proinflammatory cytokine Ccl12. Ccl12 prevented initiation of the reparative response by prolonging inflammation and inhibiting fibroblast conversion to myofibroblasts, resulting in diminished scar formation. Macrophage secretion of Ccl12 directly impaired fibronectin and collagen deposition and indirectly stimulated collagen degradation through upregulation of matrix metalloproteinase-2. In post-MI patients, circulating LPS levels strongly associated with the Ccl12 homologue monocyte chemotactic protein 1 (MCP-1). Patients with LPS levels ≥ 1 endotoxin units (EU)/ml (subseptic endotoxemia) at the time of hospitalization had increased end diastolic and systolic dimensions compared with post-MI patients with < 1 EU/ml, indicating that low yet pathological concentrations of circulating LPS adversely impact post-MI left ventricle (LV) remodeling by increasing MCP-1. Our study provides the first evidence to our knowledge that chronic inflammation inhibits reparative fibroblast activation and generates an unfavorable cardiac-healing environment through Ccl12-dependent mechanisms.


Asunto(s)
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas Quimioatrayentes de Monocitos/metabolismo , Miocardio/metabolismo , Periodontitis/metabolismo , Cicatrización de Heridas , Anciano , Animales , Enfermedad Crónica , Femenino , Humanos , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Persona de Mediana Edad , Miocardio/patología , Periodontitis/inducido químicamente , Periodontitis/patología , Biología de Sistemas
11.
Basic Res Cardiol ; 112(3): 33, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28439731

RESUMEN

Inflammation resolution is important for scar formation following myocardial infarction (MI) and requires the coordinated actions of macrophages and fibroblasts. In this study, we hypothesized that exogenous interleukin-10 (IL-10), an anti-inflammatory cytokine, promotes post-MI repair through actions on these cardiac cell types. To test this hypothesis, C57BL/6J mice (male, 3- to 6-month old, n = 24/group) were treated with saline or IL-10 (50 µg/kg/day) by osmotic mini-pump infusion starting at day (d) 1 post-MI and sacrificed at d7 post-MI. IL-10 infusion doubled plasma IL-10 concentrations by d7 post-MI. Despite similar infarct areas and mortality rates, IL-10 treatment significantly decreased LV dilation (1.6-fold for end-systolic volume and 1.4-fold for end-diastolic volume) and improved ejection fraction 1.8-fold (both p < 0.05). IL-10 treatment attenuated inflammation at d7 post-MI, evidenced by decreased numbers of Mac-3-positive macrophages in the infarct (p < 0.05). LV macrophages isolated from d7 post-MI mice treated with IL-10 showed significantly elevated gene expression of M2 markers (Arg1, Ym1, and Tgfb1; all p < 0.05). We further performed RNA-seq analysis on post-MI cardiac macrophages and identified 410 significantly different genes (155 increased, 225 decreased by IL-10 treatment). By functional network analysis grouping, the majority of genes (133 out of 410) were part of the cellular assembly and repair functional group. Of these, hyaluronidase 3 (Hyal3) was the most important feature identified by p value. IL-10 treatment decreased Hyal3 by 28%, which reduced hyaluronan degradation and limited collagen deposition (all p < 0.05). In addition, in vivo IL-10 treatment increased fibroblast activation (proliferation, migration, and collagen production), an effect that was both directly and indirectly influenced by macrophage M2 polarization. Combined, our results indicate that in vivo infusion of IL-10 post-MI improves the LV microenvironment to dampen inflammation and facilitate cardiac wound healing.


Asunto(s)
Fibroblastos/inmunología , Interleucina-10/metabolismo , Macrófagos/inmunología , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/fisiología , Animales , Diferenciación Celular/inmunología , Polaridad Celular , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-10/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Trends Pharmacol Sci ; 38(5): 448-458, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28365093

RESUMEN

In response to myocardial infarction (MI), the wound healing response of the left ventricle (LV) comprises overlapping inflammatory, proliferative, and maturation phases, and the cardiac fibroblast is a key cell type involved in each phase. It has recently been appreciated that, early post-MI, fibroblasts transform to a proinflammatory phenotype and secrete cytokines and chemokines as well as matrix metalloproteinases (MMPs). Later post-MI, fibroblasts are activated to anti-inflammatory and proreparative phenotypes and generate anti-inflammatory and proangiogenic factors and extracellular matrix (ECM) components that form the infarct scar. Additional studies are needed to systematically examine how fibroblast activation shifts over the timeframe of the MI response and how modulation at different activation stages could alter wound healing and LV remodeling in distinct ways. This review summarizes current fibroblast knowledge as the foundation for a discussion of existing knowledge gaps.


Asunto(s)
Infarto del Miocardio/patología , Miofibroblastos/patología , Animales , Humanos
13.
Am J Physiol Heart Circ Physiol ; 312(3): H375-H383, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011588

RESUMEN

Advancing age is an independent risk factor for cardiovascular disease. Matrix metalloproteinase-9 (MMP-9) is secreted by macrophages and robustly increases in the left ventricle (LV) with age. The present study investigated the effect of MMP-9 overexpression in macrophages on cardiac aging. We compared 16- to 21-mo-old C57BL/6J wild-type (WT) and transgenic (TG) male and female mice (n = 15-20/group). MMP-9 overexpression amplified the hypertrophic response to aging, as evidenced by increased LV wall thickness and myocyte cross-sectional areas (P < 0.05 for both). MMP-9 overexpression reduced LV expression of the angiogenesis-related factors ICAM-1, integrins α3 and ß3, platelet/endothelial cell adhesion molecule-1, thrombospondin-1, tenascin-c, and versican (all P < 0.05). Concomitantly, the number of vessels in the TG was lower than WT LV (P < 0.05). This led to a mismatch in the muscle-to-vessel ratio and resulted in increased cardiac inflammation. Out of 84 inflammatory genes analyzed, 16 genes increased in the TG compared with WT (all P < 0.05). Of the elevated genes, 14 were proinflammatory genes. The increase in cardiac inflammation resulted in greater accumulation of interstitial collagen in TG (P < 0.05). Fractional shortening was similar between groups, indicating that global cardiac function was still preserved at this age. In conclusion, overexpression of MMP-9 in macrophages resulted in exacerbated cardiac hypertrophy in the setting of vessel rarefaction, which resulted in enhanced inflammation and fibrosis to augment the cardiac-aging phenotype. Our results provide evidence that macrophage-derived MMP-9 may be a therapeutic target in elderly subjects.NEW & NOTEWORTHY The present study was the first to use mice with transgenic overexpression of matrix metalloproteinase-9 (MMP-9) in macrophages to examine the effects of macrophage-derived MMP-9 on cardiac aging. We found that an elevation in macrophage-derived MMP-9 induced a greater age-dependent cardiac hypertrophy and vessel rarefaction phenotype, which enhanced cardiac inflammation and fibrosis.


Asunto(s)
Envejecimiento/patología , Vasos Sanguíneos/fisiopatología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Inflamación/fisiopatología , Metaloproteinasa 9 de la Matriz/genética , Animales , Cardiomegalia/diagnóstico por imagen , Tamaño de la Célula , Colágeno/metabolismo , Ecocardiografía , Femenino , Fibrosis , Ventrículos Cardíacos/patología , Humanos , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/patología
14.
J Mol Cell Cardiol ; 100: 109-117, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27746126

RESUMEN

Matrix metalloproteinase-9 (MMP-9) is robustly elevated in the first week post-myocardial infarction (MI). Targeted deletion of the MMP-9 gene attenuates cardiac remodeling post-MI by reducing macrophage infiltration and collagen accumulation through increased apoptosis and reduced inflammation. In this study, we used a translational experimental design to determine whether selective MMP-9 inhibition early post-MI would be an effective therapeutic strategy in mice. We enrolled male C57BL/6J mice (3-6months old, n=116) for this study. Mice were subjected to coronary artery ligation. Saline or MMP-9 inhibitor (MMP-9i; 0.03µg/day) treatment was initiated at 3h post-MI and the mice were sacrificed at day (D) 1 or 7 post-MI. MMP-9i reduced MMP-9 activity by 31±1% at D1 post-MI (p<0.05 vs saline) and did not affect survival or infarct area. Surprisingly, MMP-9i treatment increased infarct wall thinning and worsened cardiac function at D7 post-MI. While MMP-9i enhanced neutrophil infiltration at D1 and macrophage infiltration at D7 post-MI, CD36 levels were lower in MMP-9i compared to saline, signifying reduced phagocytic potential per macrophage. Escalation and prolongation of the inflammatory response at D7 post-MI in the MMP-9i group was evident by increased expression of 18 pro-inflammatory cytokines (all p<0.05). MMP-9i reduced cleaved caspase 3 levels at D7 post-MI, consistent with reduced apoptosis and defective inflammation resolution. Because MMP-9i effects on inflammatory cells were significantly different from previously observed MMP-9 null mechanisms, we evaluated pre-MI (baseline) systemic differences between C57BL/6J and MMP-9 null plasma. By mass spectrometry, 34 plasma proteins were significantly different between groups, revealing a previously unappreciated altered baseline environment pre-MI when MMP-9 was deleted. In conclusion, early MMP-9 inhibition delayed inflammation resolution and exacerbated cardiac dysfunction, highlighting the importance of using translational approaches in mice.


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Disfunción Ventricular/metabolismo , Animales , Apoptosis , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Matriz Extracelular/metabolismo , Expresión Génica , Inmunohistoquímica , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Ratones , Mortalidad , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infiltración Neutrófila , Interferencia de ARN , Disfunción Ventricular/genética , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
15.
Biochem J ; 473(22): 4227-4242, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27655909

RESUMEN

SNAT1 is a system N/A neutral amino acid transporter that primarily expresses in neurons and mediates the transport of l-glutamine (Gln). Gln is an important amino acid involved in multiple cellular functions and also is a precursor for neurotransmitters, glutamate and GABA. In the present study, we demonstrated that SNAT1 is an N-glycoprotein expressed in neurons. We identified three glycosylation sites at asparagine residues 251, 257 and 310 in SNAT1 protein, and that the first two are the primary sites. The biotinylation and confocal immunofluorescence analysis showed that the glycosylation-impaired mutants and deglycosylated SNAT1 were equally capable of expressing on the cell surface. However, l-Gln and 3H-labeled methyl amino isobutyrate (MeAIB) was significantly compromised in N-glycosylation-impaired mutants and deglycosylated SNAT1 when compared with the wild-type control. Taken together, these results suggest that SNAT1 is an N-glycosylated protein with three de novo glycosylation sites and N-glycosylation of SNAT1 may play an important role in the transport of substrates across the cell membrane.


Asunto(s)
Sistema de Transporte de Aminoácidos A/química , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Asparagina/química , Asparagina/metabolismo , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Técnica del Anticuerpo Fluorescente , Glicosilación , Microscopía Confocal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Transporte de Proteínas , Tunicamicina/farmacología
16.
Am J Physiol Heart Circ Physiol ; 311(3): H822-36, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521418

RESUMEN

The purpose of this study was to evaluate the effect of sham surgery in a minimally invasive surgical model of permanent coronary artery occlusion used to generate myocardial infarction (MI) in mice. Adult male C57BL/6J mice (3-6 mo old) were divided into five groups: day (D) 0 (no surgical operation), D1 Sham, D1 MI, D7 Sham, and D7 MI. A refined MI surgery technique was used to approach the coronary artery without the ribs being cut. Both sham and MI mice had the left ventricle (LV) exposed through a small incision. To test the effects of surgery alone, the suture was passed around the coronary artery but not ligated. The MI mice were subjected to permanent coronary artery ligation. The mice were killed at D1 or D7 postsurgical procedure. Compared with D0 no surgery controls, the D1 and D7 sham groups exhibited no surgical mortality and similar necropsy and echocardiographic variables. Surgery alone did not induce an inflammatory cell response, as evidenced by the lack of leukocyte infiltration in the sham groups. Analysis of 165 inflammatory cytokines and extracellular matrix factors in sham revealed that a minor gene response was initiated but not translated to protein levels. Collagen deposition did not occur in the absence of MI. In contrast, the D1 and D7 MI groups showed the expected robust inflammatory and scar formation responses. When a minimally invasive procedure to generate MI in mice was used, the D0 (no surgical operation) control was an adequate replacement for the use of sham surgery groups.


Asunto(s)
Oclusión Coronaria/metabolismo , Vasos Coronarios/cirugía , Modelos Animales de Enfermedad , Ratones , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Placebos , Animales , Colágeno/metabolismo , Oclusión Coronaria/complicaciones , Oclusión Coronaria/patología , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Immunoblotting , Inmunohistoquímica , Ligadura , Masculino , Ratones Endogámicos C57BL , Procedimientos Quirúrgicos Mínimamente Invasivos , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Miocardio/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Am J Physiol Heart Circ Physiol ; 311(1): H190-8, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27208160

RESUMEN

Following myocardial infarction (MI), the left ventricle (LV) undergoes a series of cardiac wound healing responses that involve both the stimulation of robust inflammation to clear necrotic myocytes and tissue debris and the induction of extracellular matrix (ECM) protein synthesis to generate an infarct scar. The collective changes in myocardial structure and function are termed LV remodeling, and matrix metalloproteinase-9 (MMP-9) is a key instigator of post-MI LV remodeling. Through direct molecular effects on ECM and inflammatory protein turnover as well as indirect effects on major cell types that coordinate cardiac wound healing, namely the infiltrating leukocytes and the cardiac fibroblasts, MMP-9 coordinates multiple aspects of LV remodeling. In this review, we will discuss recent research that has expanded our understanding of post-MI LV remodeling, including recent proteomic advances focused on the ECM compartment to provide novel functional and translational insights. This overview will summarize how our understanding of MMP-9 has evolved over the last decade and will provide insight into future directions that will drive our understanding of MMP-9-directed cardiac ECM turnover in the post-MI LV.


Asunto(s)
Matriz Extracelular/metabolismo , Ventrículos Cardíacos/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Infarto del Miocardio/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Cicatrización de Heridas , Animales , Matriz Extracelular/patología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Transducción de Señal , Regulación hacia Arriba
18.
Cardiovasc Res ; 110(1): 51-61, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26825554

RESUMEN

AIMS: Although macrophage phenotypes have been well studied in the myocardial infarction (MI) setting, this study investigated temporal neutrophil polarization and activation mechanisms. METHODS AND RESULTS: Neutrophils isolated from the infarcted left ventricle (LV) of mice showed high expression of proinflammatory markers at Day 1 and anti-inflammatory markers at Days 5 and 7 post-MI, indicating distinct neutrophil phenotypes along the post-MI time continuum. Flow cytometry analysis revealed that although proinflammatory N1 neutrophils were always predominant (>80% of total neutrophils at each time point), the percentage of N2 neutrophils increased post-MI from 2.4 ± 0.6% at Day 1 to 18.1 ± 3.0% at Day 7. In vitro, peripheral blood neutrophils were polarized to proinflammatory N1 by lipopolysaccharide and interferon-γ or anti-inflammatory N2 by interleukin-4, indicating high plasticity potential. The in vivo post-MI relevant LV damage-associated molecular patterns (DAMPs) polarized neutrophils to a proinflammatory N1 phenotype by activating toll-like receptor-4. Transforming growth factor-ß1 inhibited proinflammatory production in neutrophils. N1 neutrophils positively correlated with infarct wall thinning at Day 7 post-MI, possibly due to high production of matrix metalloproteinases-12 and -25. CONCLUSION: This study is the first to identify the existence of N1 and N2 neutrophils in the infarct region and reveals that N1 polarization could be mediated by DAMPs.


Asunto(s)
Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Neutrófilos/metabolismo , Remodelación Ventricular/fisiología , Animales , Polaridad Celular , Modelos Animales de Enfermedad , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/patología
19.
J Mol Cell Cardiol ; 91: 134-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721597

RESUMEN

Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Metaloproteinasas de la Matriz/metabolismo , Infarto del Miocardio/enzimología , Miocardio/enzimología , Transducción de Señal , Remodelación Ventricular , Animales , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/enzimología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Metaloproteinasas de la Matriz/genética , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Proteómica , Cicatrización de Heridas/fisiología
20.
Proteomics Clin Appl ; 10(1): 92-107, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26415707

RESUMEN

PURPOSE: Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN: We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS: Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS: We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.


Asunto(s)
Envejecimiento/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Musculares/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Femenino , Masculino , Metaloproteinasa 9 de la Matriz/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Miocardio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...