Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 91(1): e0045922, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36448838

RESUMEN

Bacteria use the twin arginine translocator (Tat) system to export folded proteins from the cytosol to the bacterial envelope or to the extracellular environment. As with most Gram-negative bacteria, the Tat system of the zoonotic pathogen Brucella spp. is encoded by a three-gene operon, tatABC. Our attempts, using several different strategies, to create a Brucella suis strain 1330 tat mutant were all unsuccessful. This suggested that, for B. suis, Tat is essential, in contrast to a recent report for Brucella melitensis. This was supported by our findings that two molecules that inhibit the Pseudomonas aeruginosa Tat system also inhibit B. suis, B. melitensis, and Brucella abortus growth in vitro. In a bioinformatic screen of the B. suis 1330 proteome, we identified 28 proteins with putative Tat signal sequences. We used a heterologous reporter assay based on export of the Tat-dependent amidase AmiA by using the Tat signal sequences from the Brucella proteins to confirm that 20 of the 28 candidates can engage the Tat pathway.


Asunto(s)
Brucella melitensis , Brucella suis , Sistema de Translocación de Arginina Gemela , Brucella suis/genética , Brucella suis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistema de Translocación de Arginina Gemela/genética , Señales de Clasificación de Proteína , Arginina
2.
PLoS Pathog ; 17(8): e1009425, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460871

RESUMEN

Extracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin. P. aeruginosa tat mutants showed substantial reductions in pyocyanin, rhamnolipid and membrane vesicle (MV) production consistent with perturbation of PQS-dependent QS as demonstrated by changes in pqsA expression and 2-alkyl-4-quinolone (AQ) production. Provision of exogenous PQS to the tat mutants did not return pqsA, rhlA or phzA1 expression or pyocyanin production to wild type levels. However, transformation of the tat mutants with the AQ-independent pqs effector pqsE restored phzA1 expression and pyocyanin production. Since mutation or inhibition of Tat prevented PQS-driven auto-induction, we sought to identify the Tat substrate(s) responsible. A pqsA::lux fusion was introduced into each of 34 validated P. aeruginosa Tat substrate deletion mutants. Analysis of each mutant for reduced bioluminescence revealed that the primary signalling defect was associated with the Rieske iron-sulfur subunit of the cytochrome bc1 complex. In common with the parent strain, a Rieske mutant exhibited defective PQS signalling, AQ production, rhlA expression and eDNA release that could be restored by genetic complementation. This defect was also phenocopied by deletion of cytB or cytC1. Thus, either lack of the Rieske sub-unit or mutation of cytochrome bc1 genes results in the perturbation of PQS-dependent autoinduction resulting in eDNA deficient biofilms, reduced antibiotic tolerance and compromised virulence factor production.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Complejo III de Transporte de Electrones/metabolismo , Vesículas Extracelulares/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Quinolonas/metabolismo , Percepción de Quorum , Sistema de Translocación de Arginina Gemela/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , ADN Bacteriano/genética , Complejo III de Transporte de Electrones/genética , Regulación Bacteriana de la Expresión Génica , Glucolípidos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Sistema de Translocación de Arginina Gemela/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Front Microbiol ; 10: 1218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231326

RESUMEN

Pseudomonas aeruginosa has evolved multiple strategies to disarm and take advantage of its host. For this purpose, this opportunist pathogen has particularly developed protein secretion in the surrounding medium or injection into host cells. Among this, the type VI secretion system (T6SS) is utilized to deliver effectors into eukaryotic host as well as target bacteria. It assembles into a contractile bacteriophage tail-like structure that functions like a crossbow, injecting an arrow loaded with effectors into the target cell. The repertoire of T6SS antibacterial effectors of P. aeruginosa is remarkably broad to promote environmental adaptation and survival in various bacterial communities, and presumably in the eukaryotic host too. Here, we report the discovery of a novel pair of antibacterial effector and immunity of P. aeruginosa, Tle3 and Tli3. Tli3 neutralizes the toxicity of Tle3 in the periplasm to protect from fratricide intoxication. The characterization of the secretion mechanism of Tle3 indicates that it requires a cytoplasmic adaptor, Tla3, to be targeted and loaded onto the VgrG2b spike and thus delivered by the H2-T6SS machinery. Tla3 is different from the other adaptors discovered so far and defines a novel family among T6SS with a DUF2875. Interestingly, this led us to discover that VgrG2b that we previously characterized as an anti-eukaryotic effector possesses an antibacterial activity as well, as it is toxic towards Escherichia coli. Excitingly Tli3 can counteract VgrG2b toxicity. VgrG2b is thus a novel trans-kingdom effector targeting both bacteria and eukaryotes. VgrG2b represents an interesting target for fighting against P. aeruginosa in the environment and in the context of host infection.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31001488

RESUMEN

Antivirulence strategies aim to target pathogenicity factors while bypassing the pressure on the bacterium to develop resistance. The MgtC membrane protein has been proposed as an attractive target that is involved in the ability of several major bacterial pathogens, including Pseudomonas aeruginosa, to survive inside macrophages. In liquid culture, P. aeruginosa MgtC acts negatively on biofilm formation. However, a putative link between these two functions of MgtC in P. aeruginosa has not been experimentally addressed. In the present study, we first investigated the contribution of exopolysaccharides (EPS) in the intramacrophage survival defect and biofilm increase of mgtC mutant. Within infected macrophages, expression of EPS genes psl and alg was increased in a P. aeruginosa mgtC mutant strain comparatively to wild-type strain. However, the intramacrophage survival defect of mgtC mutant was not rescued upon introduction of psl or alg mutation, suggesting that MgtC intramacrophage role is unrelated to EPS production, whereas the increased biofilm formation of mgtC mutant was partially suppressed by introduction of psl mutation. We aimed to develop an antivirulence strategy targeting MgtC, by taking advantage of a natural antagonistic peptide, MgtR. Heterologous expression of mgtR in P. aeruginosa PAO1 was shown to reduce its ability to survive within macrophages. We investigated for the first time the biological effect of a synthetic MgtR peptide on P. aeruginosa. Exogenously added synthetic MgtR peptide lowered the intramacrophage survival of wild-type P. aeruginosa PAO1, thus mimicking the phenotype of an mgtC mutant as well as the effect of endogenously produced MgtR peptide. In correlation with this finding, addition of MgtR peptide to bacterial culture strongly reduced MgtC protein level, without reducing bacterial growth or viability, thus differing from classical antimicrobial peptides. On the other hand, the addition of exogenous MgtR peptide did not affect significantly biofilm formation, indicating an action toward EPS-independent phenotype rather than EPS-related phenotype. Cumulatively, our results show an antivirulence action of synthetic MgtR peptide, which may be more potent against acute infection, and provide a proof of concept for further exploitation of anti-Pseudomonas strategies.


Asunto(s)
Biopelículas/efectos de los fármacos , Proteínas de Transporte de Catión/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Macrófagos/microbiología , Viabilidad Microbiana/efectos de los fármacos , Péptidos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Inhibidores Enzimáticos/aislamiento & purificación , Péptidos/genética , Péptidos/aislamiento & purificación , Pseudomonas aeruginosa/crecimiento & desarrollo
6.
Sci Rep ; 8(1): 11950, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30093651

RESUMEN

In bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence. However, the full set of Tat substrates is unknown in many bacteria, and the reliability of in silico prediction methods largely uncertain. In this work, we performed a combination of in silico analysis and experimental validation to identify a core set of Tat substrates in the opportunistic pathogen Pseudomonas aeruginosa. In silico analysis predicted 44 putative Tat signal peptides in the P. aeruginosa PA14 proteome. We developed an improved amidase-based Tat reporter assay to show that 33 of these are real Tat signal peptides. In addition, in silico analysis of the full translated genome revealed a Tat candidate with a missassigned start codon. We showed that it is a new periplasmic protein in P. aeruginosa. Altogether we discovered and validated 34 Tat substrates. These show little overlap with Escherichia coli Tat substrates, and functional analysis points to a general role for the P. aeruginosa Tat system in the colonization of environmental niches and pathogenicity.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Estudio de Asociación del Genoma Completo/métodos , Pseudomonas aeruginosa/genética , Sistema de Translocación de Arginina Gemela/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Pseudomonas aeruginosa/metabolismo , Especificidad por Sustrato , Sistema de Translocación de Arginina Gemela/metabolismo
7.
J Biol Chem ; 292(8): 3252-3261, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28057754

RESUMEN

The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/análisis , Sistemas de Secreción Bacterianos/genética , Infecciones por Bacteroidaceae/microbiología , Cristalografía por Rayos X , Genes Bacterianos , Humanos , Porphyromonas gingivalis/química , Porphyromonas gingivalis/genética , Mapas de Interacción de Proteínas , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
8.
Sci Rep ; 6: 27675, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279369

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa uses secretion systems to deliver exoproteins into the environment. These exoproteins contribute to bacterial survival, adaptation, and virulence. The Twin arginine translocation (Tat) export system enables the export of folded proteins into the periplasm, some of which can then be further secreted outside the cell. However, the full range of proteins that are conveyed by Tat is unknown, despite the importance of Tat for the adaptability and full virulence of P. aeruginosa. In this work, we explored the P. aeruginosa Tat-dependent exoproteome under phosphate starvation by two-dimensional gel analysis. We identified the major secreted proteins and new Tat-dependent exoproteins. These exoproteins were further analyzed by a combination of in silico analysis, regulation studies, and protein localization. Altogether we reveal that the absence of the Tat system significantly affects the composition of the exoproteome by impairing protein export and affecting gene expression. Notably we discovered three new Tat exoproteins and one novel type II secretion substrate. Our data also allowed the identification of two new start codons highlighting the importance of protein annotation for subcellular predictions. The new exoproteins that we identify may play a significant role in P. aeruginosa pathogenesis, host interaction and niche adaptation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistema de Translocación de Arginina Gemela/metabolismo , Proteínas Bacterianas/genética , Fosfatos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Pseudomonas aeruginosa/genética , Sistema de Translocación de Arginina Gemela/genética
10.
PLoS One ; 11(1): e0147435, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808644

RESUMEN

Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the "E. coli"- and "Burkholderia-type". CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.


Asunto(s)
Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Pseudomonas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Methods Mol Biol ; 1149: 185-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24818905

RESUMEN

Proteins within a cell are localized into specific cellular compartments, allowing compartmentalization of distinct tasks. If we consider lipid bilayers as compartments, then gram-negative bacteria such as Pseudomonas aeruginosa can target proteins to five distinct locations: the cytoplasm, the inner membrane, the periplasm, the outer membrane, and the extracellular environment. In this chapter, we describe how the different compartments can be selectively isolated by a combination of centrifugation and disruption techniques. Fractionation of the cells into subcellular compartments enables protein enrichment and is essential to accurately determine the localization of specific proteins, which is the first step towards understanding the function of a protein in the cell.


Asunto(s)
Fraccionamiento Celular/métodos , Pseudomonas aeruginosa/citología , Membrana Celular/metabolismo , Centrifugación por Gradiente de Densidad , Medios de Cultivo , Citoplasma/metabolismo , Fracciones Subcelulares/metabolismo
12.
mBio ; 4(6): e00912-13, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24327342

RESUMEN

UNLABELLED: Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. IMPORTANCE: The human pathogen Pseudomonas aeruginosa causes life-threatening infections in immunodepressed and cystic fibrosis patients. The emergence of P. aeruginosa strains resistant to all of the available antibacterial agents calls for the urgent development of new antibiotics active against this bacterium. The pathogenic power of P. aeruginosa is mediated by an arsenal of extracellular virulence factors, most of which are stabilized by disulfide bonds. Thus, targeting the machinery that introduces disulfide bonds appears to be a promising strategy to combat P. aeruginosa. Here, we unraveled the oxidative protein folding system of P. aeruginosa in full detail. The system uniquely consists of two membrane proteins that generate disulfide bonds de novo to deliver them to P. aeruginosa DsbA1 (PaDsbA1), a soluble oxidoreductase. PaDsbA1 in turn donates disulfide bonds to secreted proteins, including virulence factors. Disruption of the disulfide bond formation machinery dramatically decreases P. aeruginosa virulence, confirming that disulfide formation systems are valid targets for the design of antimicrobial drugs.


Asunto(s)
Disulfuros/metabolismo , Redes y Vías Metabólicas/genética , Periplasma/enzimología , Proteína Disulfuro Isomerasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Humanos , Periplasma/química , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Pseudomonas aeruginosa/genética , Factores de Virulencia/metabolismo
13.
Microbiology (Reading) ; 155(Pt 12): 3992-4004, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19778964

RESUMEN

The twin-arginine translocation (Tat) pathway is a prokaryotic protein targeting system dedicated to the transmembrane translocation of folded proteins. Substrate proteins are directed to the Tat translocase by signal peptides bearing a conserved SRRxFLK 'twin-arginine' motif. In Escherichia coli, most of the 27 periplasmically located Tat substrates are cofactor-containing respiratory enzymes, and many of these harbour a molybdenum cofactor at their active site. Molybdenum cofactor-containing proteins are not exclusively located in the periplasm, however, with the major respiratory nitrate reductase (NarG) and the biotin sulfoxide reductase (BisC), for example, being located at the cytoplasmic side of the membrane. Interestingly, both NarG and BisC contain 'N-tail' regions that bear some sequence similarity to twin-arginine signal peptides. In this work, we have examined the relationship between the non-exported N-tails and the Tat system. Using a sensitive genetic screen for Tat transport, variant N-tails were identified that displayed Tat transport activity. For the NarG 36-residue N-tail, six amino acid changes were needed to induce transport activity. However, these changes interfered with binding by the NarJ biosynthetic chaperone and impaired biosynthesis of the native enzyme. For the BisC 36-residue N-tail, only five amino acid substitutions were needed to restore Tat transport activity. These modifications also impaired in vivo BisC activity, but it was not possible to identify a biosynthetic chaperone for this enzyme. These data highlight an intimate genetic and evolutionary link between some non-exported redox enzymes and those transported across membranes by the Tat translocation system.


Asunto(s)
Transporte de Electrón/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Evolución Molecular , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Nitrato-Reductasa/química , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido
14.
J Bacteriol ; 191(15): 4732-49, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19376873

RESUMEN

The yjeE, yeaZ, and ygjD genes are highly conserved in the genomes of eubacteria, and ygjD orthologs are also found throughout the Archaea and eukaryotes. In this study, we have constructed conditional expression strains for each of these genes in the model organism Escherichia coli K12. We show that each gene is essential for the viability of E. coli under laboratory growth conditions. Growth of the conditional strains under nonpermissive conditions results in dramatic changes in cell ultrastructure. Deliberate repression of the expression of yeaZ results in cells with highly condensed nucleoids, while repression of yjeE and ygjD expression results in at least a proportion of very enlarged cells with an unusual peripheral distribution of DNA. Each of the three conditional expression strains can be complemented by multicopy clones harboring the rstA gene, which encodes a two-component-system response regulator, strongly suggesting that these proteins are involved in the same essential cellular pathway. The results of bacterial two-hybrid experiments show that YeaZ can interact with both YjeE and YgjD but that YgjD is the preferred interaction partner. The results of in vitro experiments indicate that YeaZ mediates the proteolysis of YgjD, suggesting that YeaZ and YjeE act as regulators to control the activity of this protein. Our results are consistent with these proteins forming a link between DNA metabolism and cell division.


Asunto(s)
Escherichia coli K12/metabolismo , Escherichia coli K12/fisiología , Proteínas de Escherichia coli/fisiología , Viabilidad Microbiana/genética , Escherichia coli K12/genética , Escherichia coli K12/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano/genética , Genoma Bacteriano/fisiología , Microscopía Electrónica de Transmisión , Unión Proteica , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
15.
FEBS Lett ; 581(21): 4091-7, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17686475

RESUMEN

The Tat (twin arginine translocation) system transports folded proteins across bacterial and thylakoid membranes. The integral membrane proteins TatA, TatB, and TatC are the essential components of the Tat pathway in Escherichia coli. We demonstrate that formation of a stable complex between TatB and TatC does not require TatA or other Tat components. We show that the TatB and TatC proteins are each able to a form stable, defined, homomultimeric complexes. These we suggest correspond to structural subcomplexes within the parental TatBC complex. We infer that TatC forms a core to the TatBC complex on to which TatB assembles.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Complejos Multiproteicos/genética , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
17.
J Biol Chem ; 279(46): 47543-54, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15347649

RESUMEN

The Tat protein export system serves to export folded proteins harboring an N-terminal twin arginine signal peptide across the cytoplasmic membrane. In this study, we have used gene expression profiling of Escherichia coli supported by phenotypic analysis to investigate how cells respond to a defect in the Tat pathway. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are defective in the integrity of their cell envelope because of the mislocalization of two amidases involved in cell wall metabolism (Ize, B., Stanley, N. R., Buchanan, G., and Palmer, T. (2003) Mol. Microbiol. 48, 1183-1193). To distinguish between genes that are differentially expressed specifically because of the cell envelope defect and those that result from other effects of the tatC deletion, we also analyzed two different transposon mutants of the DeltatatC strain that have their outer membrane integrity restored. Approximately 50% of the genes that were differentially expressed in the tatC mutant are linked to the envelope defect, with the products of many of these genes involved in self-defense or protection mechanisms, including the production of exopolysaccharide. Among the changes that were not explicitly linked to envelope integrity, we characterized a role for the Tat system in iron acquisition and copper homeostasis. Finally, we have demonstrated that overproduction of the Tat substrate SufI saturates the Tat translocon and produces effects on global gene expression that are similar to those resulting from the DeltatatC mutation.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas , Cobre/metabolismo , Medios de Cultivo/química , Elementos Transponibles de ADN , Hierro/metabolismo , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Operón , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Fenotipo , Transporte de Proteínas/fisiología
18.
J Bacteriol ; 186(18): 6311-5, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15342602

RESUMEN

Formate dehydrogenase N (FDH-N) of Escherichia coli is a membrane-bound enzyme comprising FdnG, FdnH, and FdnI subunits organized in an (alphabetagamma)3 configuration. The FdnG subunit carries a Tat-dependent signal peptide, which localizes the protein complex to the periplasmic side of the membrane. We noted that substitution of the first arginine (R5) in the twin arginine signal sequence of FdnG for a variety of other amino acids resulted in a dramatic (up to 60-fold) increase in the levels of protein synthesized. Bioinformatic analysis suggested that the mRNA specifying the first 17 codons of fdnG forms a stable stem-loop structure. A detailed mutational analysis has demonstrated the importance of this mRNA stem-loop in modulating FDH-N translation.


Asunto(s)
Escherichia coli/metabolismo , Formiato Deshidrogenasas/biosíntesis , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Mensajero/química , Fusión Artificial Génica , Secuencia de Bases , Análisis Mutacional de ADN , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Genes Reporteros , Datos de Secuencia Molecular , Proteínas Periplasmáticas/biosíntesis , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
19.
Biochimie ; 86(4-5): 283-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15194231

RESUMEN

EtpM of the enterohemorrhagic E. coli O157:H7 is a bitopic membrane protein of the type II protein secretion apparatus. There is a twin-arginine (RR) motif in front of its signal anchor, suggesting a Tat-dependent membrane targeting of EtpM. By exploiting the periplasmic bactericidal activity of colicin V (ColV), we constructed EtpM-ColV fusions and studied the EtpM-mediated translocation of ColV. The wild type strain and the DeltatatC mutant were killed by the expressed fusions and were fully protected from the killing effect by the ColV-specific immunity protein. In contrast, cold-inactivation of YidC, which is generally required for integral membrane protein assembly, significantly attenuated the killing effect in the cold-sensitive yidC mutant. These results confirmed the predicted N(in)-C(out) EtpM topology, and suggests an EtpM-mediated, Tat-independent and YidC-dependent translocation of ColV.


Asunto(s)
Membrana Celular/metabolismo , Colicinas/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencias de Aminoácidos , Arginina , Frío , Colicinas/genética , Citoplasma/metabolismo , Escherichia coli O157/citología , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Productos del Gen tat/genética , Productos del Gen tat/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación/genética , Periplasma/metabolismo , Fenotipo , Pliegue de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sensación Térmica
20.
Mol Microbiol ; 48(5): 1183-93, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12787348

RESUMEN

The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are highly defective in the integrity of their cell envelope. Here, we report the isolation, by transposon mutagenesis, of tat mutant strains that have their outer membrane integrity restored. This outer membrane repair of the tat mutant arises as a result of upregulation of the amiB gene, which encodes a cell wall amidase. Overexpression of the genes encoding the two additional amidases, amiA and amiC, does not compensate for the outer membrane defect of the tatC strain. Analysis of the amiA and amiC coding sequences indicates that the proteins may be synthesized with plausible twin-arginine signal sequences, and we demonstrate that they are translocated to the periplasm by the Tat pathway. A Tat+ strain that has mislocalized AmiA and AmiC proteins because of deletion of their signal peptides displays an identical defective cell envelope phenotype. The presence of genes encoding amidases with twin-arginine signal sequences in the genomes of other Gram-negative bacteria suggests that a similar cell envelope defect may be a common feature of tat mutant strains.


Asunto(s)
Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Membrana Celular/metabolismo , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Dodecil Sulfato de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...