Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemistryOpen ; 12(5): e202300026, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098884

RESUMEN

The photophysics of a thermally activated delayed fluorescence (TADF) emitting macrocycle consisting of two dibenzo[a,j]phenazine acceptor moieties bridged by two N,N,N',N'-tetraphenylene-1,4-diamine donor units was scrutinized in solution by steady-state and time-resolved spectroscopy. The fluorescence lifetime of the compound proved to be strongly solvent-dependent. It ranges from 6.3 ns in cyclohexane to 34 ps in dimethyl sulfoxide. In polar solvents the fluorescence decay is predominantly due to internal conversion. In non-polar ones radiative decay and intersystem crossing contribute. Contrary to the behaviour in polymer matrices (S. Izumi et al., J. Am. Chem. Soc. 2020, 142, 1482) the excited state decay is not predominantly due to prompt and delayed fluorescence. The solvent-dependent behaviour is analyzed with the aid of quantum chemical computations.

2.
Chemistry ; 29(14): e202202702, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36520052

RESUMEN

A new class of diamino-substituted π-extended phenazine compound was synthesized, and its photophysical properties were investigated. The U-shaped diaminophenazine displayed photoluminescence in solution with moderate quantum yield. The diamino aromatic compound was found applicable to the poly-condensation with formaldehyde to form Tröger's base ladder polymer. The obtained microporous ladder polymer features high CO2 adsorption selectivity against N2 , most likely due to the presence of basic nitrogen atoms in the phenazine rings.

3.
Beilstein J Org Chem ; 18: 459-468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558649

RESUMEN

A new thermally activated delayed fluorescence (TADF) compound based on a donor-acceptor (D-A) architecture (D = phenoxazine; A = dibenzo[a,j]phenazine) has been developed, and its photophysical properties were characterized. The D-A compound is applicable as an emitting material for efficient organic light-emitting diodes (OLEDs), and its external quantum efficiency (EQE) exceeds the theoretical maximum of those with prompt fluorescent emitters. Most importantly, comparative study of the D-A molecule and its D-A-D counterpart from the viewpoints of the experiments and theoretical calculations revealed the effect of the number of the electron donor on the thermally activated delayed fluorescent behavior.

4.
Nano Lett ; 21(15): 6456-6462, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34038137

RESUMEN

Two-dimensional honeycomb molecular networks confine a substrate's surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored. Here, we show that these two types of pore states do coexist within the smallest nanocavities of a two-dimensional halogen-bonding multiporous network grown on Ag(111) studied using a combination of scanning tunneling microscopy and spectroscopy, density functional theory calculations, and electron plane wave expansion simulations. We find that superatom molecular orbitals undergo an important stabilization when hybridizing with the confined surface state, following the significant lowering of its free-standing energy. These findings provide further control over the surface electronic structure exerted by two-dimensional nanoporous systems.

5.
Chem Asian J ; 15(23): 4098-4103, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33094560

RESUMEN

A new thermally activated delayed fluorescence (TADF)-displaying macrocyclic compound m-1 comprising of two electron-donors (N,N'-diphenyl-m-phenylenediamine) and two electron-acceptors (dibenzo[a,j]phenazine) has been synthesized. The macrocycle developed herein is regarded as a regioisomer of the previously reported TADF macrocycle p-1, which has two N,N'-diphenyl-p-phenylenediamines as the donors. To understand the influence of the topology of the phenylenediamine donors on physicochemical properties of TADF-active macrocycles, herein the molecular structure in the single crystals, photophysical properties, electrochemical behavior, and TADF properties of m-1 have been investigated compared with those of p-1. The substitution of p-phenylene donor with m-phenylene donor led to distinct positive solvatoluminochromism over the full visible-color range, unique oxidative electropolymerization, and slightly lower contribution of TADF, due to the lower CT character in the excited states.

6.
J Am Chem Soc ; 142(3): 1482-1491, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31895980

RESUMEN

A new class of thermally activated delayed fluorescent donor-acceptor-donor-acceptor (D-A-D-A) π-conjugated macrocycle comprised of two U-shaped electron-acceptors (dibenzo[a,j]phenazine) and two electron-donors (N,N'-diphenyl-p-phenyelendiamine) has been rationally designed and successfully synthesized. The macrocyclic compound displayed polymorphs-dependent conformations and emission properties. Comparative studies on physicochemical properties of the macrocycle with a linear surrogate have revealed significant effects of the structural cyclization of the D-A-repeating unit, including more efficient thermally activated delayed fluorescence (TADF). Furthermore, an organic light-emitting diode (OLED) device fabricated with the macrocycle compound as the emitter has achieved a high external quantum efficiency (EQE) up to 11.6%, far exceeding the theoretical maximum (5%) of conventional fluorescent emitters and that with linear analogue (6.9%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA