Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
DNA Repair (Amst) ; 135: 103648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382170

RESUMEN

DNA damage response (DDR) is a complex process, essential for cell survival. Especially deleterious type of DNA damage are DNA double-strand breaks (DSB), which can lead to genomic instability and malignant transformation if not repaired correctly. The central player in DSB detection and repair is the ATM kinase which orchestrates the action of several downstream factors. Recent studies have suggested that long non-coding RNAs (lncRNAs) are involved in DDR. Here, we aimed to identify lncRNAs induced upon DNA damage in an ATM-dependent manner. DNA damage was induced by ionizing radiation (IR) in immortalized lymphoblastoid cell lines derived from 4 patients with ataxia-telangiectasia (AT) and 4 healthy donors. RNA-seq revealed 10 lncRNAs significantly induced 1 h after IR in healthy donors, whereas none in AT patients. 149 lncRNAs were induced 8 h after IR in the control group, while only three in AT patients. Among IR-induced mRNAs, we found several genes with well-known functions in DDR. Gene Set Enrichment Analysis and Gene Ontology revealed delayed induction of key DDR pathways in AT patients compared to controls. The induction and dynamics of selected 9 lncRNAs were confirmed by RT-qPCR. Moreover, using a specific ATM inhibitor we proved that the induction of those lncRNAs is dependent on ATM. Some of the detected lncRNA genes are localized next to protein-coding genes involved in DDR. We observed that induction of lncRNAs after IR preceded changes in expression of adjacent genes. This indicates that IR-induced lncRNAs may regulate the transcription of nearby genes. Subcellular fractionation into chromatin, nuclear, and cytoplasmic fractions revealed that the majority of studied lncRNAs are localized in chromatin. In summary, our study revealed several lncRNAs induced by IR in an ATM-dependent manner. Their genomic co-localization and co-expression with genes involved in DDR suggest that those lncRNAs may be important players in cellular response to DNA damage.


Asunto(s)
Ataxia Telangiectasia , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Daño del ADN , Cromatina , Línea Celular , Proteínas de la Ataxia Telangiectasia Mutada
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834942

RESUMEN

Transmembrane protein 244 (TMEM244) was annotated to be a member of the TMEM family, which are is a component of cell membranes and is involved in many cellular processes. To date, the expression of the TMEM244 protein has not been experimentally confirmed, and its function has not been clarified. Recently, the expression of the TMEM244 gene was acknowledged to be a diagnostic marker for Sézary syndrome, a rare cutaneous T-cell lymphoma (CTCL). In this study, we aimed to determine the role of the TMEM244 gene in CTCL cells. Two CTCL cell lines were transfected with shRNAs targeting the TMEM244 transcript. The phenotypic effect of TMEM244 knockdown was validated using green fluorescent protein (GFP) growth competition assays and AnnexinV/7AAD staining. Western blot analysis was performed to identify the TMEM244 protein. Our results indicate that TMEM244 is not a protein-coding gene but a long non-coding RNA (lncRNA) that is necessary for the growth of CTCL cells.


Asunto(s)
Linfoma Cutáneo de Células T , ARN Largo no Codificante , Humanos , Ciclo Celular/genética , Linfoma Cutáneo de Células T/genética , ARN Largo no Codificante/genética , Síndrome de Sézary/genética , Síndrome de Sézary/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
4.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887172

RESUMEN

Histone deacetylases (HDACs) are a group of enzymes called "epigenetic erasers". They remove the acetyl group from histones changing the condensation state of chromatin, leading to epigenetic modification of gene expression and various downstream effects. Eighteen HDACs have been identified and grouped into four classes. The role of HDACs in T-cells has been extensively studied, and it has been proven that many of them are important players in T-cell development and function. In this review, we present the current state of knowledge on the role of HDACs in the early stages of T-cell development but also in the functioning of mature lymphocytes on the periphery, including activation, cytokine production, and metabolism regulation.


Asunto(s)
Histona Desacetilasas , Histonas , Acetilación , Diferenciación Celular/genética , Cromatina/genética , Epigénesis Genética , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Histonas/metabolismo
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563322

RESUMEN

The B-cell CLL/lymphoma 11B gene (BCL11B) plays a crucial role in T-cell development, but its role in T-cell malignancies is still unclear. To study its role in the development of T-cell neoplasms, we generated an inducible BCL11B knockout in a murine T cell leukemia/lymphoma model. Mice, bearing human oncogenes TAL BHLH Transcription Factor 1 (TAL1; SCL) or LIM Domain Only 1 (LMO1), responsible for T-cell acute lymphoblastic leukemia (T-ALL) development, were crossed with BCL11B floxed and with CRE-ER/lox mice. The mice with a single oncogene BCL11Bflox/floxCREtg/tgTAL1tg or BCL11Bflox/floxCREtg/tgLMO1tg were healthy, bred normally, and were used to maintain the mice in culture. When crossed with each other, >90% of the double transgenic mice BCL11Bflox/floxCREtg/tgTAL1tgLMO1tg, within 3 to 6 months after birth, spontaneously developed T-cell leukemia/lymphoma. Upon administration of synthetic estrogen (tamoxifen), which binds to the estrogen receptor and activates the Cre recombinase, the BCL11B gene was knocked out by excision of its fourth exon from the genome. The mouse model of inducible BCL11B knockout we generated can be used to study the role of this gene in cancer development and the potential therapeutic effect of BCL11B inhibition in T-cell leukemia and lymphoma.


Asunto(s)
Leucemia de Células T , Factores de Transcripción , Animales , Modelos Animales de Enfermedad , Proteínas con Dominio LIM/genética , Leucemia de Células T/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética
6.
Arch Med Sci ; 17(5): 1158-1163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522244

RESUMEN

INTRODUCTION: The inactivation of both alleles of the ATM gene leads to ataxia-telangiectasia syndrome, whereas carriers of monoallelic mutations in the ATM gene are associated with increased risk of different types of cancer. Three substitutions in the ATM gene (c.6095G>A, c.7630-2A>C, c.5932G>T) are the most common mutations causing ataxia-telangiectasia among Polish patients. The aim of this study was to determine whether these ATM mutations are associated with increased risk of tobacco-related cancers. MATERIAL AND METHODS: 783 Polish patients with tobacco-related cancers were included in the study (468 with lung cancer, 153 with a single laryngeal cancer, 86 with multiple primary tumors localized in the larynx and 76 multiple primary tumors localized in the head or neck). The control group consisted of 464 healthy subjects from the Polish population. Three ATM mutations - c.5932G>T, c.6095G>A, c.7630-2A>C - were tested among selected patients. Molecular analyses were performed using high resolution melting analysis and restriction fragment length polymorphism. RESULTS: In the present study, we detected only one mutation, c.7630-2A>C, and no carriers of c.5932G>T, c.6095G>A mutations in the ATM gene among Polish patients with tobacco-related cancers. A patient with c.7630-2A>C mutation was diagnosed with lung adenocarcinoma, the most common type of lung cancer. One carrier of c.6095G>A mutation was found in the control group. CONCLUSIONS: The results indicate that the studied ATM variants do not seem to be associated with tobacco-related cancers in Poland.

7.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919074

RESUMEN

Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/secundario , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Hipoxia/fisiopatología , Neoplasias Pulmonares/patología , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Proteínas Activadoras de GTPasa/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica , Células Tumorales Cultivadas
8.
Exp Dermatol ; 30(8): 1135-1140, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32350933

RESUMEN

In cutaneous T-cell lymphoma (CTCL), global hypomethylation of the genome and hypermethylation of tumor suppressor genes were detected. Studies show that methylation dysregulation is often a starting point for processes that might lead to malignant transformation. In this review, all data regarding copy-number variations (CNVs) and mutations in main methylation players DNA methyltransferases/TET in CTCL were summarized. An overview of studies on gene-specific hypomethylation and hypermethylation in CTCL, including methylation of microRNA genes, was presented. The possibility of using the methylation pattern in diagnosis and methylation inhibitors in treatment of CTCL was discussed.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Linfoma Cutáneo de Células T/genética , Neoplasias Cutáneas/genética , Regulación Neoplásica de la Expresión Génica , Humanos
9.
Cancers (Basel) ; 12(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751918

RESUMEN

Cutaneous T-cell lymphomas (CTCLs) represent a large, heterogeneous group of non-Hodgkin lymphomas that primarily affect the skin. Among multiple CTCL variants, the most prevalent types are mycosis fungoides (MF) and Sézary syndrome (SS). In the past decade, the molecular genetics of CTCL have been the target of intense study, increasing the knowledge of CTCL genomic alterations, discovering novel biomarkers, and potential targets for patient-specific therapy. However, the detailed pathogenesis of CTCL development still needs to be discovered. This review aims to summarize the novel insights into molecular heterogeneity of malignant cells using high-throughput technologies, such as RNA sequencing and single-cell RNA sequencing, which might be useful to identify tumour-specific molecular signatures and, therefore, offer guidance for therapy, diagnosis, and prognosis of CTCL.

10.
J Cell Mol Med ; 24(18): 10970-10977, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794659

RESUMEN

Sézary syndrome (SS) is an aggressive form of cutaneous T-cell lymphoma (CTCL) characterized by the presence of circulating malignant CD4+ T cells (Sézary cells) with many complex changes in the genome, transcriptome and epigenome. Epigenetic dysregulation seems to have an important role in the development and progression of SS as it was shown that SS cells are characterized by widespread changes in DNA methylation. In this study, we show that the transmembrane protein coding gene TMEM244 is ectopically expressed in all SS patients and SS-derived cell lines and, to a lower extent, in mycosis fungoides and in a fraction of T-cell lymphomas, but not in B-cell malignancies and mononuclear cells of healthy individuals. We show that in patient samples and in the T-cell lines TMEM244 expression is negatively correlated with the methylation level of its promoter. Furthermore, we demonstrate that TMEM244 expression can be activated in vitro by the CRISPR-dCas9-induced specific demethylation of TMEM244 promoter region. Since both, TMEM244 expression and its promoter demethylation, are not detected in normal lymphoid cells, they can be potentially used as markers in Sézary syndrome and some other T-cell lymphomas.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas/genética , Síndrome de Sézary/genética , Anciano , Anciano de 80 o más Años , Sistemas CRISPR-Cas , Línea Celular Tumoral , Femenino , Vectores Genéticos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/metabolismo , Masculino , Proteínas de la Membrana/biosíntesis , Persona de Mediana Edad , Micosis Fungoide/genética , Micosis Fungoide/metabolismo , Proteínas de Neoplasias/biosíntesis , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Síndrome de Sézary/metabolismo
11.
J Hematol Oncol ; 13(1): 176, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33384022

RESUMEN

T cell lymphomas (TCL) comprise a heterogeneous group of non-Hodgkin lymphomas (NHL) that often present at an advanced stage at the time of diagnosis and that most commonly have an aggressive clinical course. Treatment in the front-line setting is most often cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, which are effective in B cell lymphomas, but in TCL are associated with a high failure rate and frequent relapses. Furthermore, in contrast to B cell NHL, in which substantial clinical progress has been made with the introduction of monoclonal antibodies, no comparable advances have been seen in TCL. To change this situation and improve the prognosis in TCL, new gene-targeted therapies must be developed. This is now possible due to enormous progress that has been made in the last years in the understanding of the biology and molecular pathogenesis of TCL, which enables the implementation of the research findings in clinical practice. In this review, we present new therapies and current clinical and preclinical trials on targeted treatments for TCL using histone deacetylase inhibitors (HDACi), antibodies, chimeric antigen receptor T cells (CARTs), phosphatidylinositol 3-kinase inhibitors (PI3Ki), anaplastic lymphoma kinase inhibitors (ALKi), and antibiotics, used alone or in combinations. The recent clinical success of ALKi and conjugated anti-CD30 antibody (brentuximab-vedotin) suggests that novel therapies for TCL can significantly improve outcomes when properly targeted.


Asunto(s)
Linfoma de Células T/terapia , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Inmunoconjugados/uso terapéutico , Inmunoterapia Adoptiva , Linfoma de Células T/tratamiento farmacológico , Terapia Molecular Dirigida , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico
12.
Diabetes Res Clin Pract ; 142: 146-153, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29859273

RESUMEN

AIMS: Type 1 diabetes (T1D) is an autoimmune disorder caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. T1D is a consequence of complex processes, influenced by genetic, epigenetic and environmental factors. MicroRNAs (miRNAs) are small non-coding RNAs that target multiple mRNAs and regulate gene expression. The implication of miRNAs in T1D pathogenesis, as potential modulators of immune response genes, remains poorly defined. The aim of this study was to investigate the expression profile of miRNAs in new onset T1D and the impact of deregulated miRNAs on target genes. METHODS: Total RNA from peripheral blood mononuclear cells of newly diagnosed T1D pediatric patients and age-matched controls was screened for disease-associated miRNAs by a microarray analysis, with subsequent validation by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). miRNA targets were identified by luciferase reporter assays. RESULTS: The microarray analysis revealed 91 deregulated miRNAs (P < 0.05) in T1D group compared to non-diabetic controls. Within this group we observed one upregulated and seven downregulated miRNAs with fold change >2.0. qRT-PCR validation revealed overexpression of miR-487a-3p which has not been previously reported in the context of T1D. Luciferase reporter assays indicated CTLA4 and FOXO3 genes as miR-487a-3p targets. CONCLUSION: Our study suggests that miR-487a-3p might repress CTLA4 and FOXO3 by binding to their 3'UTRs and contribute to the development of T1D.


Asunto(s)
Antígeno CTLA-4/genética , Diabetes Mellitus Tipo 1/genética , Proteína Forkhead Box O3/genética , MicroARNs/genética , Antígeno CTLA-4/metabolismo , Niño , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Femenino , Proteína Forkhead Box O3/metabolismo , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Regulación hacia Arriba
13.
J Cancer ; 8(19): 3933-3938, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29187867

RESUMEN

Several genome-wide association studies (GWASs), have identified that FAM13A and IREB2 loci are associated with lung cancer, but the mechanisms by which these genes contribute to lung diseases susceptibility, especially in hypoxia context, are unknown. Hypoxia has been identified as a major negative factor for tumor progression in clinical observation. It has been suggested, that lower oxygen tension, may modulate the IREB2 and FAM13A activity. However, the role of these genes in hypoxia response has not been explained. To precise the role of these genes in hypoxia response, we analyzed the FAM13A and IREB2 expression, in lung cancer cells in vitro and lung cancer tissue fragments cultured ex vivo. Three cell lines: non-small cell lung cancer (A549, CORL-105), human lung fibroblasts (HL) and 37 lung cancer tissue fragments were analyzed. The expression of IREB2, FAM13A and HIF1α after sustained 72 hours of hypoxia versus normal oxygen concentration were analyzed by TaqMan® Gene Expression Assays and Western Blot. The expression of FAM13A was significantly up-regulated by hypoxia in two lung cancer cell lines (A549, CORL-105, P<0.001), both at the level of protein and mRNA, and in lung cancer tissue fragments (P=0.0004). The IREB2 was down-regulated after hypoxia in A549 cancer cells (P<0.001). CONCLUSIONS: We found that FAM13A overexpression in human lung cancer cell lines overlapped with hypoxia effect on lung cancer tissues. FAM13A is strongly induced by hypoxia and may be identified as a novel hypoxia-induced gene in non-small cell lung cancer.

14.
Oncotarget ; 8(24): 39627-39639, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28489605

RESUMEN

Sézary syndrome (SS) is an aggressive, leukemic cutaneous T-cell lymphoma variant. Molecular pathogenesis of SS is still unclear despite many studies on genetic alterations, gene expression and epigenetic regulations. Through whole genome and transcriptome next generation sequencing nine Sézary syndrome patients were analyzed in terms of copy number variations and rearrangements affecting gene expression. Recurrent copy number variations were detected within 8q (MYC, TOX), 17p (TP53, NCOR1), 10q (PTEN, FAS), 2p (DNMT3A), 11q (USP28), 9p (CAAP1), but no recurrent rearrangements were identified. However, expression of five genes involved in rearrangements (TMEM244, EHD1, MTMR2, RNF123 and TOX) was altered in all patients. Fifteen rearrangements detected in Sézary syndrome patients and SeAx resulted in an expression of new fusion transcripts, nine of them were in frame (EHD1-CAPN12, TMEM66-BAIAP2, MBD4-PTPRC, PTPRC-CPN2, MYB-MBNL1, TFG-GPR128, MAP4K3-FIGLA, DCP1A-CCL27, MBNL1-KIAA2018) and five resulted in ectopic expression of fragments of genes not expressed in normal T-cells (BAIAP2, CPN2, GPR128, CAPN12, FIGLA). Our results not only underscored the genomic complexity of the Sézary cancer cell genome but also showed an unpreceded large variety of novel gene rearrangements resulting in fusions transcripts and ectopically expressed genes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Proteínas de Fusión Oncogénica/genética , Síndrome de Sézary/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Cromosomas Humanos , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Síndrome de Sézary/patología , Neoplasias Cutáneas/patología
15.
Eur J Haematol ; 93(2): 143-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24649974

RESUMEN

OBJECTIVES: To better understand the molecular pathogenesis of T-cell large granular lymphocyte leukemia (T-LGL), we decided to search for those genetic alterations in T-LGL patients and MOTN-1 cell line (established from T-LGL patient) that have an impact on gene expression and as a result can influence cell biology. METHODS: Multicolor fluorescence in situ hybridization (mFISH) analysis of the MOTN-1 cell line was performed as well as paired-end next-generation sequencing (NGS; Illumina HiSeq2000) of this cell line and one T-LGL patient. In addition, chosen 6q region was characterized in three T-LGL patients using high-resolution comparative genomic hybridization (FT-CGH) and LM-PCR. Gene expression was studied by RNA sequencing (RNAseq; SOLID5500). RESULTS: Rearrangements were detected within 1p and 2q in MOTN-1 affecting expression of FGR, ZEB2, and CASP8, and within 6q in MOTN-1 and one T-LGL patient affecting MAP3K5 and IFNGR1. Nineteen genes, among them FOXN3, RIN3, AKT1, PPP2R5C, were overexpressed as a result of an amplification in 14q in one T-LGL patient. Two novel fusion transcripts were identified: CASP8-ERBB4 in MOTN-1 and SBF1-PKHD1L1 in T-LGL patient. CONCLUSIONS: This study showed that submicroscopic genomic rearrangements change gene expression in T-LGL. Several genes involved in rearrangements were previously linked to cancer and survival pattern that characterizes T-LGL cells.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Reordenamiento Génico de Linfocito T , Leucemia Linfocítica Granular Grande/genética , Proteínas de Neoplasias/genética , Línea Celular Tumoral , Hibridación Genómica Comparativa , Humanos , Hibridación Fluorescente in Situ , Leucemia Linfocítica Granular Grande/patología
16.
J Invest Dermatol ; 133(11): 2617-2625, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23698072

RESUMEN

The 6q23-27 region, recurrently deleted in Sézary syndrome (SS), was characterized at the molecular level in 13 SS patients and SS cell line SeAx. Using fine-tiling comparative genomic hybridization, deletions within the 6q23-27 region were detected in half of the samples (six patients and SeAx). All samples with deletions were further analyzed by ligation-mediated PCR. In addition, in one patient sample and in SeAx, paired-end next-generation sequencing was performed on the HiSeq2000 Illumina platform. Using those techniques, 23 rearrangements associated with the deletions were identified. The majority of rearrangements showed enormous complexity and diversity, including eight inversions, three transpositions, and four translocations (with chromosomes 3, 17, 10, and 12). Fifteen genes were disrupted by those rearrangements, the MYB proto-oncogene three times and the interleukin-22 receptor subunit alpha-2 gene (IL22RA2) twice. All three patients with MYB alterations showed low MYB expression, whereas seven of the remaining patients showed overexpression. Most patients overexpressing MYB also presented increased expression of MYC, HSPA8, and BCL2. Five gene fusions were identified, of which two, CCDC28A-IL22RA2 and AIG1-GOSR1, both in SeAx, were in the same orientation and were expressed at the messenger RNA level.


Asunto(s)
Cromosomas Humanos Par 6 , Eliminación de Gen , Reordenamiento Génico/genética , Síndrome de Sézary/genética , Anciano , Secuencia de Bases , Línea Celular , Hibridación Genómica Comparativa , Femenino , Fusión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proto-Oncogenes Mas
17.
Leuk Lymphoma ; 52(5): 745-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21323514

RESUMEN

Sezary syndrome (SS) is a rare form of cutaneous T-cell lymphoma characterized by erythroderma and the presence of Sezary cells in the skin, lymph nodes, and peripheral blood. Over the past few decades, cytogenetic and molecular cytogenetic findings have revealed many genetic alterations in patients with SS. The most frequent genetic lesions include monosomy 10, losses of 10q and 17p, gains of 8q24 and 17q, and diverse structural alterations involving these regions. Expression patterns in regions of genomic imbalance show that a large number of genes in SS are deregulated, and this might have a causative role in oncogenesis. Overall, chromosomal instability is characteristic of this lymphoma and related to a poor prognosis, but no specific abnormalities that may be directly involved in development of the disease have yet been found.


Asunto(s)
Aberraciones Cromosómicas , Síndrome de Sézary/genética , Inestabilidad Cromosómica , Análisis Citogenético , Humanos , Síndrome de Sézary/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...