Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Extracell Vesicles ; 12(12): e12368, 2023 12.
Article En | MEDLINE | ID: mdl-38047476

Extracellular vesicles (EVs) can be loaded with therapeutic cargo and engineered for retention by specific body sites; therefore, they have great potential for targeted delivery of biomolecules to treat diseases. However, the pharmacokinetics and biodistribution of EVs in large animals remain relatively unknown, especially in primates. We recently reported that when cell culture-derived EVs are administered intravenously to Macaca nemestrina (pig-tailed macaques), they differentially associate with specific subsets of peripheral blood mononuclear cells (PBMCs). More than 60% of CD20+ B cells were observed to associate with EVs for up to 1 h post-intravenous administration. To investigate these associations further, we developed an ex vivo model of whole blood collected from healthy pig-tailed macaques. Using this ex vivo system, we found that labelled EVs preferentially associate with B cells in whole blood at levels similar to those detected in vivo. This study demonstrates that ex vivo blood can be used to study EV-blood cell interactions.


Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Leukocytes, Mononuclear , Tissue Distribution , Macaca nemestrina , Cell Communication
2.
Adv Healthc Mater ; 12(29): e2301944, 2023 11.
Article En | MEDLINE | ID: mdl-37565378

Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.


Printing, Three-Dimensional , Tissue Scaffolds , Swine , Animals , Swine, Miniature , Biocompatible Materials/pharmacology , Bone Regeneration , Osteogenesis
3.
Comp Med ; 2023 Mar 21.
Article En | MEDLINE | ID: mdl-36944497

The common marmoset (Callithrix jacchus), a New World NHP, has emerged as important animal model in multiple areas of translational biomedical research. The quality of translational research in marmosets depends on early diagnosis, treatment, and prevention of their spontaneous diseases. Here, we characterize an outbreak of infectious cholangiohepatitis that affected 7 adult common marmosets in a single building over a 10-mo period. Marmosets presented for acute onset of lethargy, dull mentation, weight loss, dehydration, hyporexia, and hypothermia. Blood chemistries at presentation revealed markedly elevated hepatic and biliary enzymes, but mild neutrophilia was detected in only 1 of the 7. Affected marmosets were unresponsive to rigorous treatment and died or were euthanized within 48 h of presentation. Gross and histopathologic examinations revealed severe, necrosuppurative cholangiohepatitis and proliferative cholecystitis with bacterial colonies and an absence of gallstones. Perimortem and postmortem cultures revealed single or dual isolates of Escherichia coli and Pseudomonas aeruginosa. Other postmortem findings included bile duct hyperplasia, periportal hepatitis, bile peritonitis, ulcerative gastroenteritis, and typhlitis. Environmental contamination of water supply equipment with Pseudomonas spp. was identified as the source of infection, but pathogenesis remains unclear. This type of severe, infectious cholangiohepatitis with proliferative cholecystitis with Pseudomonas spp. had not been reported previously in marmosets, and we identified and here describe several contributing factors in addition to contaminated drinking water.

4.
Otolaryngol Head Neck Surg ; 167(4): 716-724, 2022 10.
Article En | MEDLINE | ID: mdl-35998065

OBJECTIVE: Tapered low-volume, low-pressure (LVLP) cuffs have been introduced to improve sealing and reduce injury from tracheostomy and endotracheal intubation compared to traditional cylindrical high-volume, low-pressure (HVLP) cuffs. The objective of this study is to develop a swine model of tracheostomy injury and to compare live tissue response following LVLP and HVLP tracheostomy placement. STUDY DESIGN: In vivo animal study. SETTING: Academic institution. METHODS: Swine underwent tracheostomy followed by placement of LVLP and HVLP tracheostomy cuffs at 30 cm H2O. After 24 and 48 hours, tracheal specimens underwent histopathological analysis including cilia, lamina propria and epithelial thickness, and mucosal injury score. RESULTS: In all cuff contact areas, mean epithelial thickness for both tracheostomy cohorts was decreased compared to control epithelium at 24 and 48 hours (P < .01). HVLP proximal epithelium thickness was decreased at 24 and 48 hours relative to LVLP sections (P < .05). Lamina propria thickness in proximal LVLP sections was less than HVLP sections at 24 hours and 48 hours (P < .05). Mucosal injury score at areas of cuff contact was increased in tracheostomy cohorts relative to controls (P < .001), with HVLP injury score greater than LVLP at the proximal cuff (P < .05). CONCLUSION: In a swine model, tracheostomy resulted in increased mucosal injury compared to normal tracheal mucosa. LVLP cuffs resulted in less injury than HVLP cuffs, with reduced mucosal inflammation and improved health of epithelium and lamina propria. The wider proximal LVLP cuff demonstrated improved mucosal health compared to the HVLP cylindrical cuff.


Intubation, Intratracheal , Tracheostomy , Animals , Equipment Design , Intubation, Intratracheal/methods , Mucous Membrane , Swine , Trachea
5.
J Extracell Biol ; 1(10)2022 Oct.
Article En | MEDLINE | ID: mdl-36591537

Extracellular vesicles (EVs) have potential in disease treatment since they can be loaded with therapeutic molecules and engineered for retention by specific tissues. However, questions remain on optimal dosing, administration, and pharmacokinetics. Previous studies have addressed biodistribution and pharmacokinetics in rodents, but little evidence is available for larger animals. Here, we investigated the pharmacokinetics and biodistribution of Expi293F-derived EVs labelled with a highly sensitive nanoluciferase reporter (palmGRET) in a non-human primate model (Macaca nemestrina), comparing intravenous (IV) and intranasal (IN) administration over a 125-fold dose range. We report that EVs administered IV had longer circulation times in plasma than previously reported in mice and were detectable in cerebrospinal fluid (CSF) after 30-60 minutes. EV association with PBMCs, especially B-cells, was observed as early as one minute post-administration. EVs were detected in liver and spleen within one hour of IV administration. However, IN delivery was minimal, suggesting that pretreatment approaches may be needed in large animals. Furthermore, EV circulation times strongly decreased after repeated IV administration, possibly due to immune responses and with clear implications for xenogeneic EV-based therapeutics. We hope that our findings from this baseline study in macaques will help to inform future research and therapeutic development of EVs.

6.
Cornea ; 40(5): 635-642, 2021 May 01.
Article En | MEDLINE | ID: mdl-33528225

PURPOSE: To characterize corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected macaques by combining in vivo corneal confocal microscopy (IVCM) with automated assessments using deep learning-based methods customized for macaques. METHODS: IVCM images were collected from both male and female age-matched rhesus and pigtailed macaques housed at the Johns Hopkins University breeding colony using the Heidelberg HRTIII with Rostock Corneal Module. We also obtained repeat IVCM images of 12 SIV-infected animals including preinfection and 10-day post-SIV infection time points. All IVCM images were analyzed using a deep convolutional neural network architecture developed specifically for macaque studies. RESULTS: Deep learning-based segmentation of subbasal nerves in IVCM images from macaques demonstrated that corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtailed macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques (P = 0.005). Neither sex nor age of macaques was associated with differences in any of the assessed corneal subbasal nerve parameters. In the SIV/macaque model of human immunodeficiency virus, acute SIV infection induced significant decreases in both corneal nerve fiber length and fractal dimension (P = 0.01 and P = 0.008, respectively). CONCLUSIONS: The combination of IVCM and robust objective deep learning analysis is a powerful tool to track sensory nerve damage, enabling early detection of neuropathy. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical settings including human immunodeficiency virus.


Cornea/innervation , Deep Learning , Eye Infections, Viral/diagnosis , Microscopy, Confocal , Nerve Fibers/pathology , Simian Acquired Immunodeficiency Syndrome/diagnosis , Simian Immunodeficiency Virus/pathogenicity , Trigeminal Nerve Diseases/diagnosis , Acute Disease , Animals , Cornea/diagnostic imaging , Disease Models, Animal , Eye Infections, Viral/virology , Female , Humans , Macaca mulatta , Macaca nemestrina , Male , Middle Aged , Nerve Fibers/virology , Neural Networks, Computer , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Trigeminal Nerve Diseases/virology
7.
Eye Vis (Lond) ; 7: 27, 2020.
Article En | MEDLINE | ID: mdl-32420401

BACKGROUND: To develop and validate a deep learning-based approach to the fully-automated analysis of macaque corneal sub-basal nerves using in vivo confocal microscopy (IVCM). METHODS: IVCM was used to collect 108 images from 35 macaques. 58 of the images from 22 macaques were used to evaluate different deep convolutional neural network (CNN) architectures for the automatic analysis of sub-basal nerves relative to manual tracings. The remaining images were used to independently assess correlations and inter-observer performance relative to three readers. RESULTS: Correlation scores using the coefficient of determination between readers and the best CNN averaged 0.80. For inter-observer comparison, inter-correlation coefficients (ICCs) between the three expert readers and the automated approach were 0.75, 0.85 and 0.92. The ICC between all four observers was 0.84, the same as the average between the CNN and individual readers. CONCLUSIONS: Deep learning-based segmentation of sub-basal nerves in IVCM images shows high to very high correlation to manual segmentations in macaque data and is indistinguishable across readers. As quantitative measurements of corneal sub-basal nerves are important biomarkers for disease screening and management, the reported work offers utility to a variety of research and clinical studies using IVCM.

8.
Comp Med ; 66(4): 324-32, 2016.
Article En | MEDLINE | ID: mdl-27538863

Chronic diarrhea poses a significant threat to the health of NHP research colonies, and its primary etiology remains unclear. In macaques, the clinical presentation of intractable diarrhea and weight loss that are accompanied by inflammatory infiltrates within the gastrointestinal tract closely resembles inflammatory bowel disease of humans, dogs, and cats, in which low serum and tissue cobalamin (vitamin B12) levels are due to intestinal malabsorption. We therefore hypothesized that macaques with chronic idiopathic diarrhea (CID) have lower serum cobalamin concentrations than do healthy macaques. Here we measured serum cobalamin concentrations in both rhesus and pigtailed macaques with CID and compared them with those of healthy controls. Serum cobalamin levels were 2.5-fold lower in pigtailed macaques with CID than control animals but did not differ between rhesus macaques with CID and their controls. This finding supports the use of serum cobalamin concentration as an adjunct diagnostic tool in pigtailed macaques that present with clinical symptoms of chronic gastrointestinal disease. This use of serum vitamin B12 levels has implications for the future use of parenteral cobalamin supplementation to improve clinical outcomes in this species.


Diarrhea/blood , Macaca mulatta/blood , Macaca nemestrina/blood , Monkey Diseases/blood , Vitamin B 12/blood , Animals , Case-Control Studies , Chronic Disease , Female , Humans , Inflammatory Bowel Diseases/blood , Male , Reference Values , Species Specificity
9.
BMC Vet Res ; 11: 187, 2015 Aug 08.
Article En | MEDLINE | ID: mdl-26253321

BACKGROUND: Macaques are an excellent model for many human diseases, including reproductive diseases such as endometriosis. A long-recognized need for early biomarkers of endometriosis has not yet resulted in consensus. While biomarker studies have examined many bodily fluids and targets, cervicovaginal secretions have been relatively under-investigated. Extracellular vesicles (EVs, including exosomes and microvesicles) are found in every biofluid examined, carry cargo including proteins and RNA, and may participate in intercellular signaling. Little is known about EVs in the cervicovaginal compartment, including the effects of reproductive tract disease on quantity and quality of EVs. CASE PRESENTATION: In September 2014, a 9-year-old rhesus macaque was diagnosed with endometriosis at The Johns Hopkins University School of Medicine. Ultrasound-guided fine needle aspiration of a cyst and subsequent laparotomy confirmed diagnosis. The animal was sent to necropsy following euthanasia for humane reasons. Perimortem vaginal swabs and cervicovaginal lavages were obtained. Using a combination of methods, including ultracentrifugation and NanoSight visualization technology, approximate numbers of EVs from each sample were calculated and compared to populations of EVs from other, reproductively normal macaques. Fewer EVs were recovered from the endometriosis samples as compared with those from reproductively healthy individuals. CONCLUSION: To our knowledge, this is the first examination of EVs in primate cervicovaginal secretions, including those of a macaque with endometriosis. This case study suggests that additional research is justified to determine whether quantification of EVs-or their molecular cargo-in cervicovaginal lavage and vaginal swabs may provide a novel, relatively non-invasive diagnostic for primate endometrial disease or other reproductive tract diseases.


Endometriosis/veterinary , Extracellular Vesicles/physiology , Monkey Diseases/diagnosis , Animals , Biomarkers , Endometriosis/diagnosis , Endometriosis/pathology , Female , Macaca mulatta
...