Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 211
1.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Article En | MEDLINE | ID: mdl-38123154

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Databases, Pharmaceutical , Ion Channels , Humans , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
2.
Plants (Basel) ; 12(5)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36903991

Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.

3.
Scand J Immunol ; 97(4): e13253, 2023 Apr.
Article En | MEDLINE | ID: mdl-36597220

Virus neutralization at respiratory mucosal surfaces is important in the prevention of infection. Mucosal immunity is mediated mainly by extracellular secretory immunoglobulin A (sIgA) and its role has been well studied. However, the protective role of intracellular specific IgA (icIgA) is less well defined. Initially, in vitro studies using epithelial cell lines with surface expressed polymeric immunoglobulin receptor (pIgR) in transwell culture chambers have shown that icIgA can neutralize influenza, parainfluenza, HIV, rotavirus and measles viruses. This effect appears to involve an interaction between polymeric immunoglobulin A (pIgA) and viral particles within an intracellular compartment, since IgA is transported across the polarized cell. Co-localization of specific icIgA with influenza virus in patients' (virus culture positive) respiratory epithelial cells using well-characterized antisera was initially reported in 2018. This review provides a summary of in vitro studies with icIgA on colocalization and neutralization of the above five viruses. Two other highly significant respiratory infectious agents with severe global impacts viz. SARS-2 virus (CoViD pandemic) and the intracellular bacterium-Mycobacterium tuberculosis-are discussed. Further studies will provide more detailed understanding of the mechanisms and kinetics of icIgA neutralization in relation to viral entry and early replication steps with a specific focus on mucosal infections. This will inform the design of more effective vaccines against infectious agents transmitted via the mucosal route.


COVID-19 , Receptors, Polymeric Immunoglobulin , Vaccines , Humans , Immunoglobulin A , Antibodies, Monoclonal , COVID-19/prevention & control , Cell Line , Immunity, Mucosal , Immunoglobulin A, Secretory
4.
Br J Pharmacol ; 180(2): 235-251, 2023 01.
Article En | MEDLINE | ID: mdl-36168728

BACKGROUND AND PURPOSE: Transient receptor potential melastatin type-8 (TRPM8) is a cold-sensitive cation channel protein belonging to the TRP superfamily of ion channels. Here, we reveal the molecular mechanism of TRPM8 and its clinical relevance in colorectal cancer (CRC). EXPERIMENTAL APPROACH: TRPM8 expression and its correlation with the survival rate of CRC patients was analysed. To identify the key pathways and genes related to TRPM8 high expression, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted in CRC patients. TRPM8 functional role was assessed by using Trpm8-/- mice in models of sporadic and colitis-associated colon cancer. TRPM8 pharmacological targeting by WS12 was evaluated in murine models of CRC. KEY RESULTS: TRPM8 is overexpressed in colon primary tumours and in CD326+ tumour cell fraction. TRPM8 high expression was related to lower survival rate of CRC patients, Wnt-Frizzled signalling hyperactivation and adenomatous polyposis coli down-regulation. In sporadic and colitis-associated models of colon cancer, either absence or pharmacological desensitization of TRPM8 reduced tumour development via inhibition of the oncogenic Wnt/ß-catenin signalling. TRPM8 pharmacological blockade reduced tumour growth in CRC xenograft mice by reducing the transcription of Wnt signalling regulators and the activation of ß-catenin and its target oncogenes such as C-Myc and Cyclin D1. CONCLUSION AND IMPLICATIONS: Human data provide valuable insights to propose TRPM8 as a prognostic marker with a negative predictive value for CRC patient survival. Animal experiments demonstrate TRPM8 involvement in colon cancer pathophysiology and its potential as a drug target for CRC.


Colorectal Neoplasms , TRPM Cation Channels , Wnt Signaling Pathway , Animals , Humans , Mice , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Prognosis , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Wnt Signaling Pathway/genetics
5.
Phytother Res ; 36(12): 4620-4630, 2022 Dec.
Article En | MEDLINE | ID: mdl-36069605

Grape (Vitis vinifera L.) pomace is a residue derived from the winemaking process, which contains bioactive compounds displaying noteworthy health-promoting properties. The aim of the present study was to investigate the phenolic composition and protective effects of a water extract of grape pomace (WEGP) in colorectal cancer cell line SW480 and in isolated mouse colon exposed to Escherichia coli lipopolysaccharide (LPS). The extract decreased SW-480 cell viability, as well as vascular endothelial factor A (VEGFA), hypoxia-induced factor 1α (HIF1α), and transient receptor potential M8 (TRPM8) LPS-induced gene expression. Moreover, the extract inhibited mRNA levels of nuclear factor kB (NFkB), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-1ß, IL-10, inducible nitric oxide synthase (iNOS), and interferon (IFN)γ, in isolated colon. Conversely, WEGP increased the gene expression of antioxidant catalase (CAT) and superoxide dismutase (SOD), in the same model. The modulatory effects exerted by WEGP could be related, at least in part, to the phenolic composition, with particular regards to the catechin level. Docking calculations also predicted the interactions of catechin toward TRPM8 receptor, deeply involved in colon cancer; thus further suggesting the grape pomace as a valuable source of bioactive extracts and phytochemicals with protective effects in the colon.


Vitis , Animals , Mice , Water , Immunity , Colon
6.
Microbiol Spectr ; 10(3): e0169321, 2022 06 29.
Article En | MEDLINE | ID: mdl-35652642

The objective of this study was to characterize the effect of Bacillus Calmette-Guérin (BCG) vaccination and M. tuberculosis infection on gut and lung microbiota of C57BL/6 mice, a well-characterized mouse model of tuberculosis. BCG vaccination and infection with M. tuberculosis altered the relative abundance of Firmicutes and Bacteroidetes phyla in the lung compared with control group. Vaccination and infection changed the alpha- and beta-diversity in both the gut and the lung. However, lung diversity was the most affected organ after BCG vaccination and M. tuberculosis infection. Focusing on the gut-lung axis, a multivariate regression approach was used to compare profile evolution of gut and lung microbiota. More genera have modified relative abundances associated with BCG vaccination status at gut level compared with lung. Conversely, genera with modified relative abundances associated with M. tuberculosis infection were numerous at lung level. These results indicated that the host local response against infection impacted the whole microbial flora, while the immune response after vaccination modified mainly the gut microbiota. This study showed that a subcutaneous vaccination with a live attenuated microorganism induced both gut and lung dysbiosis that may play a key role in the immunopathogenesis of tuberculosis. IMPORTANCE The microbial communities in gut and lung are important players that may modulate the immunity against tuberculosis or other infections as well as impact the vaccine efficacy. We discovered that vaccination through the subcutaneous route affect the composition of gut and lung bacteria, and this might influence susceptibility and defense mechanisms against tuberculosis. Through these studies, we can identify microbial communities that can be manipulated to improve vaccine response and develop treatment adjuvants.


Gastrointestinal Microbiome , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , BCG Vaccine , Lung , Mice , Mice, Inbred C57BL , Tuberculosis/microbiology , Vaccination
7.
Br J Pharmacol ; 179(15): 3907-3913, 2022 08.
Article En | MEDLINE | ID: mdl-35673806

Scientists who plan to publish in British Journal of Pharmacology (BJP) must read this article before undertaking a study. This editorial provides guidance for the design of experiments. We have published previously two guidance documents on experimental design and analysis (Curtis et al., 2015; Curtis et al., 2018). This update clarifies and simplifies the requirements on design and analysis for BJP manuscripts. This editorial also details updated requirements following an audit and discussion on best practice by the BJP editorial board. Explanations for the requirements are provided in the previous articles. Here, we address new issues that have arisen in the course of handling manuscripts and emphasise three aspects of design that continue to present the greatest challenge to authors: randomisation, blinded analysis and balance of group sizes.


Research Design
10.
Pharmacol Res ; 177: 106076, 2022 03.
Article En | MEDLINE | ID: mdl-35074524

Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology Sections, with contributions from a number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.


Biological Products , Pharmacology, Clinical , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Discovery , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunomodulating Agents
11.
Br J Pharmacol ; 179(8): 1679-1694, 2022 04.
Article En | MEDLINE | ID: mdl-34791641

BACKGROUND AND PURPOSE: N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme accountable for the breakdown of N-acylethanolamines (NAEs) and its pharmacological inhibition has beneficial effects in inflammatory conditions. The knowledge of NAAA in cancer is fragmentary with an unclarified mechanism, whereas its contribution to colorectal cancer (CRC) is unknown to date. EXPERIMENTAL APPROACH: CRC xenograft and azoxymethane models were used to assess the in vivo effect of NAAA inhibition. Further, the tumour secretome was evaluated by an oncogenic array, CRC cell lines were used for in vitro studies, cell cycle was analysed by cytofluorimetry, NAAA was knocked down with siRNA, human biopsies were obtained from surgically resected CRC patients, gene expression was measured by RT-PCR and NAEs were measured by LC-MS. KEY RESULTS: The NAAA inhibitor AM9053 reduced CRC xenograft tumour growth and counteracted tumour development in the azoxymethane model. NAAA inhibition affected the composition of the tumour secretome inhibiting the expression of EGF family members. In CRC cells, AM9053 reduced proliferation with a mechanism mediated by PPAR-α and TRPV1. AM9053 induced cell cycle arrest in the S phase associated with cyclin A2/CDK2 down-regulation. NAAA knock-down mirrored the effects of NAAA inhibition with AM9053. NAAA expression was down-regulated in human CRC tissues, with a consequential augmentation of NAE levels and dysregulation of some of their targets. CONCLUSION AND IMPLICATIONS: Our results show novel data on the functional importance of NAAA in CRC progression and the mechanism involved. We propose that this enzyme is a valid drug target for the treatment of CRC growth and development.


Colorectal Neoplasms , Ethanolamines , Amidohydrolases , Azoxymethane , Colorectal Neoplasms/drug therapy , Ethanolamines/metabolism , Humans
12.
Curr Protoc ; 1(12): e312, 2021 Dec.
Article En | MEDLINE | ID: mdl-34941021

Guinea pigs have been used as a model for Mycobacterium tuberculosis infection for many years and have been more recently adopted as a model for testing new tuberculosis (TB) vaccines. From the time of Robert Koch, who used guinea pigs to test theories about the newly discovered pathogen, the guinea pig has modeled active human infections, as it is susceptible to infection with low numbers of organisms. This article describes the modern use of the guinea pig to examine the pathology of the disease and the protocols used to examine specific outcomes associated with aerosol infection with virulent M. tuberculosis. The guinea pig is used extensively to investigate the ability of new TB vaccines to reduce TB disease, and two models have been employed. The first is the long-term disease model, in which vaccinated guinea pigs are monitored for disease after infection, and the second is the short-term assessment of mycobacterial burden model, which can determine the ability of a vaccine to reduce organism burden. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of virulent Mycobacterium tuberculosis seed stocks for animal infections Basic Protocol 2: Preparation of virulent Mycobacterium tuberculosis working stocks for animal infections Basic Protocol 3: Preparation of M. tuberculosis for aerosol infection of guinea pigs Basic Protocol 4: Injection of guinea pigs Basic Protocol 5: Blood collection from live guinea pigs Basic Protocol 6: Guinea pig euthanasia.


Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Disease Models, Animal , Guinea Pigs , Tuberculosis/prevention & control
13.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 18.
Article En | MEDLINE | ID: mdl-34959729

Marine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area. Findings regarding different Mediterranean sponge species were individuated, reporting consistent evidence of efficacy mainly against cancer, infections, inflammatory, and neurological disorders. The sustainable exploitation of Mediterranean sponges as pharmaceutical sources is strongly encouraged to discover new compounds.

14.
Front Immunol ; 12: 740117, 2021.
Article En | MEDLINE | ID: mdl-34759923

Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled "Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics". In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.


Adjuvants, Immunologic/therapeutic use , Mycobacterium tuberculosis/physiology , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Animals , Congresses as Topic , Disease Models, Animal , Humans , Immune Evasion , Immunity , National Institute of Allergy and Infectious Diseases (U.S.) , Tuberculosis/therapy , United States
15.
Br J Pharmacol ; 178 Suppl 1: S313-S411, 2021 Oct.
Article En | MEDLINE | ID: mdl-34529828

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15542. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Databases, Pharmaceutical , Pharmacology , Humans , Ion Channels , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
16.
Ital J Pediatr ; 47(1): 155, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34233724

BACKGROUND: Severe hypercalcemia is rare in newborns; even though often asymptomatic, it may have important sequelae. Hypophosphatemia can occur in infants experiencing intrauterine malnutrition, sepsis and early high-energy parenteral nutrition (PN) and can cause severe hypercalcemia through an unknown mechanism. Monitoring and supplementation of phosphate (PO4) and calcium (Ca) in the first week of life in preterm infants are still debated. CASE PRESENTATION: We report on a female baby born at 29 weeks' gestation with intrauterine growth retardation (IUGR) experiencing sustained severe hypercalcemia (up to 24 mg/dl corrected Ca) due to hypophosphatemia while on phosphorus-free PN. Hypercalcemia did not improve after hyperhydration and furosemide but responded to infusion of PO4. Eventually, the infant experienced symptomatic hypocalcaemia (ionized Ca 3.4 mg/dl), likely exacerbated by contemporary infusion of albumin. Subsequently, a normalization of both parathyroid hormone (PTH) and alkaline phosphatase (ALP) was observed. CONCLUSIONS: Although severe hypercalcemia is extremely rare in neonates, clinicians should be aware of the possible occurrence of this life-threatening condition in infants with or at risk to develop hypophosphatemia. Hypophosphatemic hypercalcemia can only be managed with infusion of PO4, with strict monitoring of Ca and PO4 concentrations.


Hypercalcemia/etiology , Hypophosphatemia/complications , Parenteral Nutrition/adverse effects , Female , Humans , Hypercalcemia/therapy , Hypophosphatemia/etiology , Infant, Newborn , Infant, Premature
18.
Sci Rep ; 11(1): 12417, 2021 06 14.
Article En | MEDLINE | ID: mdl-34127755

A single intradermal vaccination with an antibiotic-less version of BCGΔBCG1419c given to guinea pigs conferred a significant improvement in outcome following a low dose aerosol exposure to M. tuberculosis compared to that provided by a single dose of BCG Pasteur. BCGΔBCG1419c was more attenuated than BCG in murine macrophages, athymic, BALB/c, and C57BL/6 mice. In guinea pigs, BCGΔBCG1419c was at least as attenuated as BCG and induced similar dermal reactivity to that of BCG. Vaccination of guinea pigs with BCGΔBCG1419c resulted in increased anti-PPD IgG compared with those receiving BCG. Guinea pigs vaccinated with BCGΔBCG1419c showed a significant reduction of M. tuberculosis replication in lungs and spleens compared with BCG, as well as a significant reduction of pulmonary and extrapulmonary tuberculosis (TB) pathology measured using pathology scores recorded at necropsy. Evaluation of cytokines produced in lungs of infected guinea pigs showed that BCGΔBCG1419c significantly reduced TNF-α and IL-17 compared with BCG-vaccinated animals, with no changes in IL-10. This work demonstrates a significantly improved protection against pulmonary and extrapulmonary TB provided by BCGΔBCG1419c in susceptible guinea pigs together with an increased safety compared with BCG in several models. These results support the continued development of BCGΔBCG1419c as an effective vaccine for TB.


BCG Vaccine/administration & dosage , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/prevention & control , Vaccination/methods , Animals , BCG Vaccine/adverse effects , BCG Vaccine/immunology , Disease Models, Animal , Female , Guinea Pigs , Humans , Immunogenicity, Vaccine , Injections, Intradermal , Lung/immunology , Lung/microbiology , Mice , Mycobacterium tuberculosis/immunology , RAW 264.7 Cells , Tuberculosis/diagnosis , Tuberculosis/immunology , Tuberculosis/microbiology
19.
J Med Chem ; 64(10): 6972-6984, 2021 05 27.
Article En | MEDLINE | ID: mdl-33961417

Over recent years, αvß6 and αvß8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvß6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvß8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvß6/αvß8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.


Antigens, Neoplasm/chemistry , Herpesvirus 1, Human/physiology , Integrins/chemistry , Ligands , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Antigens, Neoplasm/metabolism , Binding Sites , HEK293 Cells , Humans , Integrins/metabolism , Molecular Docking Simulation , Oligopeptides/metabolism , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Protein Binding , Virus Internalization/drug effects
20.
Cancers (Basel) ; 13(8)2021 Apr 16.
Article En | MEDLINE | ID: mdl-33923494

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the endocannabinoid anandamide. PEA exerts intestinal anti-inflammatory effects, but knowledge of its role in colon carcinogenesis is still largely fragmentary. We deepened this aspect by studying the effects of PEA (ultramicronized PEA, um-PEA) on colon cancer cell proliferation, migration and cell cycle as well as its effects in a murine model of colon cancer. Results showed that um-PEA inhibited tumor cell proliferation via peroxisome proliferator-activated receptor α and G protein-coupled receptor 55, induced cell cycle arrest in the G2/M phase, possibly through cyclin B1/CDK1 upregulation, and induced DNA fragmentation. Furthermore, um-PEA reduced tumor cell migration by reducing MMP2 and TIMP1 expression. In vivo administration of um-PEA exerted beneficial effects in the azoxymethane model of colonic tumors, by reducing the number of preneoplastic lesions and tumors. Collectively, our findings provide novel proofs on the effects of um-PEA in colon carcinogenesis.

...