Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
2.
Commun Biol ; 7(1): 449, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605091

Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.


Ecosystem , Nitrites , Bacteria/genetics , Oxidation-Reduction , Geologic Sediments/microbiology
4.
ISME Commun ; 3(1): 26, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36991114

By consuming ammonium and nitrite, anammox bacteria form an important functional guild in nitrogen cycling in many environments, including marine sediments. However, their distribution and impact on the important substrate nitrite has not been well characterized. Here we combined biogeochemical, microbiological, and genomic approaches to study anammox bacteria and other nitrogen cycling groups in two sediment cores retrieved from the Arctic Mid-Ocean Ridge (AMOR). We observed nitrite accumulation in these cores, a phenomenon also recorded at 28 other marine sediment sites and in analogous aquatic environments. The nitrite maximum coincides with reduced abundance of anammox bacteria. Anammox bacterial abundances were at least one order of magnitude higher than those of nitrite reducers and the anammox abundance maxima were detected in the layers above and below the nitrite maximum. Nitrite accumulation in the two AMOR cores co-occurs with a niche partitioning between two anammox bacterial families (Candidatus Bathyanammoxibiaceae and Candidatus Scalinduaceae), likely dependent on ammonium availability. Through reconstructing and comparing the dominant anammox genomes (Ca. Bathyanammoxibius amoris and Ca. Scalindua sediminis), we revealed that Ca. B. amoris has fewer high-affinity ammonium transporters than Ca. S. sediminis and lacks the capacity to access alternative substrates and/or energy sources such as urea and cyanate. These features may restrict Ca. Bathyanammoxibiaceae to conditions of higher ammonium concentrations. These findings improve our understanding about nitrogen cycling in marine sediments by revealing coincident nitrite accumulation and niche partitioning of anammox bacteria.

5.
Appl Environ Microbiol ; 88(24): e0140922, 2022 12 20.
Article En | MEDLINE | ID: mdl-36468881

The phylum "Candidatus Patescibacteria" (or Candidate Phyla Radiation [CPR]) accounts for roughly one-quarter of microbial diversity on Earth, but the presence and diversity of these bacteria in marine sediments have been rarely charted. Here, we investigate the abundance, diversity, and metabolic capacities of CPR bacteria in three sediment sites (Mohns Ridge, North Pond, and Costa Rica Margin) with samples covering a wide range of redox zones formed during the early diagenesis of organic matter. Through metagenome sequencing, we found that all investigated sediment horizons contain "Ca. Patescibacteria" (0.4 to 28% of the total communities), which are affiliated with the classes "Ca. Paceibacteria," "Ca. Gracilibacteria," "Ca. Microgenomatia," "Ca. Saccharimonadia," "Ca. ABY1," and "Ca. WWE3." However, only a subset of the diversity of marine sediment "Ca. Patescibacteria," especially the classes "Ca. Paceibacteria" and "Ca. Gracilibacteria," can be captured by 16S rRNA gene amplicon sequencing with commonly used universal primers. We recovered 11 metagenome-assembled genomes (MAGs) of CPR from these sediments, most of which are novel at the family or genus level in the "Ca. Paceibacteria" class and are missed by the amplicon sequencing. While individual MAGs are confined to specific anoxic niches, the lack of capacities to utilize the prevailing terminal electron acceptors indicates that they may not be directly selected by the local redox conditions. These CPR bacteria lack essential biosynthesis pathways and may use a truncated glycolysis pathway to conserve energy as fermentative organotrophs. Our findings suggest that marine sediments harbor some novel yet widespread CPR bacteria during the early diagenesis of organic matter, which needs to be considered in population dynamics assessments in this vast environment. IMPORTANCE Ultrasmall-celled "Ca. Patescibacteria" have been estimated to account for one-quarter of the total microbial diversity on Earth, the parasitic lifestyle of which may exert a profound control on the overall microbial population size of the local ecosystems. However, their diversity and metabolic functions in marine sediments, one of the largest yet understudied ecosystems on Earth, remain virtually uncharacterized. By applying cultivation-independent approaches to a range of sediment redox zones, we reveal that "Ca. Patescibacteria" members are rare but widespread regardless of the prevailing geochemical conditions. These bacteria are affiliated with novel branches of "Ca. Patescibacteria" and have been largely missed in marker gene-based surveys. They do not have respiration capacity but may conserve energy by fermenting organic compounds from their episymbiotic hosts. Our findings suggest that these novel "Ca. Patescibacteria" are among the previously overlooked microbes in diverse marine sediments.


Bacteria , Ecosystem , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Phylogeny , Metagenome , Geologic Sediments/microbiology
6.
Front Microbiol ; 13: 804575, 2022.
Article En | MEDLINE | ID: mdl-35663876

Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 µM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.

7.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Article En | MEDLINE | ID: mdl-35215279

Genotyping of the CYP2D6 gene is the most commonly applied pharmacogenetic test globally. Significant economic interests have led to the development of a plurality of assays, available for almost any genotyping platform or DNA detection chemistry. Of all the genetic variants, copy number variations are particular difficult to detect by polymerase chain reaction. Here, we present two simple novel approaches for the identification of samples carrying either deletions or duplications of the CYP2D6 gene; by relative quantification using a singleplex 5'nuclease real-time PCR assay, and by high-resolution melting of PCR products. These methods make use of universal primers, targeting both the CYP2D6 and the reference gene CYP2D8P, which is necessary for the analysis. The assays were validated against a reference method using a large set of samples. The singleplex nature of the 5'nuclease real-time PCR ensures that the primers anneal with equal affinity to both the sequence of the CYP2D6 and the reference gene. This facilitates robust identification of gene deletions and duplications based on the cycle threshold value. In contrast, the high-resolution melting assay is an end-point PCR, where the identification relies on variations between the amount of product generated from each of the two genes.

8.
ISME Commun ; 2(1): 42, 2022 May 19.
Article En | MEDLINE | ID: mdl-37938673

Anaerobic ammonium oxidation (Anammox) bacteria are a group of extraordinary bacteria exerting a major impact on the global nitrogen cycle. Their phylogenetic breadth and diversity, however, are not well constrained. Here we describe a new, deep-branching family in the order of Candidatus Brocadiales, Candidatus Bathyanammoxibiaceae, members of which have genes encoding the key enzymes of the anammox metabolism. In marine sediment cores from the Arctic Mid-Ocean Ridge (AMOR), the presence of Ca. Bathyanammoxibiaceae was confined within the nitrate-ammonium transition zones with the counter gradients of nitrate and ammonium, coinciding with the predicted occurrence of the anammox process. Ca. Bathyanammoxibiaceae genomes encode the core genetic machinery for the anammox metabolism, including hydrazine synthase for converting nitric oxide and ammonium to hydrazine, and hydrazine dehydrogenase for hydrazine oxidation to dinitrogen gas, and hydroxylamine oxidoreductase for nitrite reduction to nitric oxide. Their occurrences assessed by genomes and 16S rRNA gene sequencings surveys indicate that they are present in both marine and terrestrial environments. By introducing the anammox potential of Ca. Bathyanammoxibiaceae and charactering their ideal niche in marine sediments, our findings suggest that the diversity and abundance of anammox bacteria may be higher than previously thought, and provide important insights on cultivating them in the future to not only assess their biogeochemical impacts but also constrain the emergence and evolutionary history of this functional guild on Earth.

9.
Front Microbiol ; 13: 1060168, 2022.
Article En | MEDLINE | ID: mdl-36687571

Introduction: Shallow hydrothermal systems share many characteristics with their deep-sea counterparts, but their accessibility facilitates their study. One of the most studied shallow hydrothermal vent fields lies at Paleochori Bay off the coast of Milos in the Aegean Sea (Greece). It has been studied through extensive mapping and its physical and chemical processes have been characterized over the past decades. However, a thorough description of the microbial communities inhabiting the bay is still missing. Methods: We present the first in-depth characterization of the prokaryotic communities of Paleochori Bay by sampling eight different seafloor types that are distributed along the entire gradient of hydrothermal influence. We used deep sequencing of the 16S rRNA marker gene and complemented the analysis with qPCR quantification of the 16S rRNA gene and several functional genes to gain insights into the metabolic potential of the communities. Results: We found that the microbiome of the bay is strongly influenced by the hydrothermal venting, with a succession of various groups dominating the sediments from the coldest to the warmest zones. Prokaryotic diversity and abundance decrease with increasing temperature, and thermophilic archaea overtake the community. Discussion: Relevant geochemical cycles of the Bay are discussed. This study expands our limited understanding of subsurface microbial communities in acidic shallow-sea hydrothermal systems and the contribution of their microbial activity to biogeochemical cycling.

10.
ISME J ; 15(12): 3657-3667, 2021 12.
Article En | MEDLINE | ID: mdl-34158628

Energy/power availability is regarded as one of the ultimate controlling factors of microbial abundance in the deep biosphere, where fewer cells are found in habitats of lower energy availability. A critical assumption driving the proportional relationship between total cell abundance and power availability is that the cell-specific power requirement keeps constant or varies over smaller ranges than other variables, which has yet to be validated. Here we present a quantitative framework to determine the cell-specific power requirement of the omnipresent ammonia-oxidizing archaea (AOA) in eight sediment cores with 3-4 orders of magnitude variations of organic matter flux and oxygen penetration depth. Our results show that despite the six orders of magnitude variations in the rates and power supply of nitrification and AOA abundances across these eight cores, the cell-specific power requirement of AOA from different cores and depths overlaps within the narrow range of 10-19-10-17 W cell-1, where the lower end may represent the basal power requirement of microorganisms persisting in subseafloor sediments. In individual cores, AOA also exhibit similar cell-specific power requirements, regardless of the AOA population size or sediment depth/age. Such quantitative insights establish a relationship between the power supply and the total abundance of AOA, and therefore lay a foundation for a first-order estimate of the standing stock of AOA in global marine oxic sediments.


Ammonia , Archaea , Archaea/genetics , Bacteria , Geologic Sediments , Nitrification , Oxidation-Reduction , Phylogeny
11.
ISME J ; 15(9): 2792-2808, 2021 09.
Article En | MEDLINE | ID: mdl-33795828

Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.


Ammonia , Archaea , Archaea/genetics , Geologic Sediments , Metagenome , Oxidation-Reduction , Phylogeny
12.
Proc Natl Acad Sci U S A ; 117(51): 32617-32626, 2020 12 22.
Article En | MEDLINE | ID: mdl-33288718

No other environment hosts as many microbial cells as the marine sedimentary biosphere. While the majority of these cells are expected to be alive, they are speculated to be persisting in a state of maintenance without net growth due to extreme starvation. Here, we report evidence for in situ growth of anaerobic ammonium-oxidizing (anammox) bacteria in ∼80,000-y-old subsurface sediments from the Arctic Mid-Ocean Ridge. The growth is confined to the nitrate-ammonium transition zone (NATZ), a widespread geochemical transition zone where most of the upward ammonium flux from deep anoxic sediments is being consumed. In this zone the anammox bacteria abundances, assessed by quantification of marker genes, consistently displayed a four order of magnitude increase relative to adjacent layers in four cores. This subsurface cell increase coincides with a markedly higher power supply driven mainly by intensified anammox reaction rates, thereby providing a quantitative link between microbial proliferation and energy availability. The reconstructed draft genome of the dominant anammox bacterium showed an index of replication (iRep) of 1.32, suggesting that 32% of this population was actively replicating. The genome belongs to a Scalindua species which we name Candidatus Scalindua sediminis, so far exclusively found in marine sediments. It has the capacity to utilize urea and cyanate and a mixotrophic lifestyle. Our results demonstrate that specific microbial groups are not only able to survive unfavorable conditions over geological timescales, but can proliferate in situ when encountering ideal conditions with significant consequences for biogeochemical nitrogen cycling.


Bacterial Physiological Phenomena , Genome, Bacterial , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Ammonium Compounds/chemistry , Arctic Regions , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Nitrates/chemistry , Nitrogen/metabolism , Oceans and Seas
13.
Front Microbiol ; 11: 1520, 2020.
Article En | MEDLINE | ID: mdl-32903319

The reconstruction of past climate variability using physical and geochemical parameters from lake sedimentary records is a well-established and widely used approach. These geological records are also known to contain large and active microbial communities, believed to be responsive to their surroundings at the time of deposition, and proceed to interact intimately with their physical and chemical environment for millennia after deposition. However, less is known about the potential legacy of past climate conditions on the contemporary microbial community structure. We analysed two Holocene-length (past 10 ka BP) sediment cores from the glacier-fed Ymer Lake, located in a highly climate-sensitive region on south-eastern Greenland. By combining physical proxies, solid as well as fluid geochemistry, and microbial population profiling in a comprehensive statistical framework, we show that the microbial community structure clusters according to established lithological units, and thus captures past environmental conditions and climatic transitions. Further, comparative analyses of the two sedimentary records indicates that the manifestation of regional climate depends on local settings such as water column depth, which ultimately constrains microbial variability in the deposited sediments. The strong coupling between physical and geochemical shifts in the lake and microbial variation highlights the potential of molecular microbiological data to strengthen and refine existing sedimentological classifications of past environmental conditions and transitions. Furthermore, this coupling implies that microbially controlled transformation and partitioning of geochemical species (e.g., manganese and sulphate) in Ymer lake today is still affected by climatic conditions that prevailed thousands of years back in time.

14.
Sci Adv ; 6(35): eabb7258, 2020 08.
Article En | MEDLINE | ID: mdl-32923644

The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.

15.
J Pers Med ; 10(3)2020 Jul 31.
Article En | MEDLINE | ID: mdl-32752034

BACKGROUND: Polypharmacy is most prevalent among the elderly population and in particular among nursing home residents. The frequency of the use of drugs with pharmacogenomics (PGx)-based dosing guidelines for CYP2D6, CYP2C9, CYP2C19 and SLCO1B1 were measured among nursing home residents in the Capital Region of Denmark as well as drug-drug interactions. The aim was to evaluate the potential of applying PGx-test as a supportive tool in medication reviews. METHODS: Drug use among nursing home residents during 2017-2018 in the Capital Region of Copenhagen, for drugs with PGx-based dosing guidelines available through the PharmGKB website, were measured. Drug-drug interactions were scored in severity by using drug interaction checkers. RESULTS: The number of residents using drugs with PGx-based actionable dosing guidelines (AG) were 119 out of 141 residents (84.3%). Of these 119 residents, 87 residents used drugs with AG for CYP2C19, 47 residents for CYP2D6, and 42 residents for SLCO1B1. In addition, 30 residents used two drugs with an AG for CYP2C19, and for CYP2D6, it was only seven residents. The most used drugs with AG were clopidogrel (42), pantoprazole (32), simvastatin (30), metoprolol (25), and citalopram (24). The most frequent drug interactions found with warnings were combinations of proton pump inhibitors and clopidogrel underscoring the potential for phenoconversion. CONCLUSION: this study clearly showed that the majority of the nursing home residents were exposed to drugs or drug combinations for which there exist PGx-based AG. This indeed supports the notion of accessing and accounting for not only drug-gene but also drug-drug-gene interactions as a supplement to medication review.

16.
ACS Nano ; 14(9): 12072-12081, 2020 09 22.
Article En | MEDLINE | ID: mdl-32830478

A proof-of-concept for the fabrication of a self-polymerizing system for sampling of gut microbiome in the upper gastrointestinal (GI) tract is presented. An orally ingestible microdevice is loaded with the self-polymerizing reaction mixture to entrap gut microbiota and biomarkers. This polymerization reaction is activated in the aqueous environment, like fluids in the intestinal lumen, and causes site-specific microsampling in the gastrointestinal tract. The sampled microbiota and protein biomarkers can be isolated and analyzed via high-throughput multiomic analyses. The study utilizes a hollow microdevice (Su-8, ca. 250 µm), loaded with an on-board reaction mixture (iron chloride, ascorbic acid, and poly(ethylene glycol) diacrylate monomers) for diacrylate polymerization in the gut of an animal model. An enteric-coated rat capsule was used to orally gavage these microdevices in a rat model, thereby, protecting the microdevices in the stomach (pH 2), but releasing them in the intestine (pH 6.6). Upon capsule disintegration, the microdevices were released in the presence of luminal fluids (in the small intestine region), where iron chloride reacts with ascorbic acid, to initiate poly(ethylene glycol) diacrylate polymerization via a free radical mechanism. Upon retrieval of the microdevices, gut microbiota was found to be entrapped in the polymerized hydrogel matrix, and genomic content was analyzed via 16s rRNA amplicon sequencing. Herein, the results show that the bacterial composition recovered from the microdevices closely resemble the bacterial composition of the gut microenvironment to which the microdevice is exposed. Further, histological assessment showed no signs of local tissue inflammation or toxicity. This study lays a strong foundation for the development of untethered, non-invasive microsampling technologies in the gut and advances our understanding of host-gut microbiome interactions, leading to a better understanding of their commensal behavior and associated GI disease progression in the near future.


Gastrointestinal Microbiome , Animals , Biomarkers , Gastrointestinal Tract , Intestines , RNA, Ribosomal, 16S , Rats
17.
Sci Rep ; 10(1): 9637, 2020 06 15.
Article En | MEDLINE | ID: mdl-32541886

MicroRNAs are small regulatory RNAs that are deregulated in a wide variety of human cancers, including different types of B-cell lymphoma. Nevertheless, the feasibility of circulating microRNA for early diagnosis of B-cell lymphoma has not been established. To address the possibility of detecting specific circulating microRNAs years before a B-cell lymphoma is diagnosed, we studied the plasma expression of microRNA first in pre-treatment samples from patients with diffuse large B-cell lymphoma and subsequently in repository samples from blood donors who later developed B-cell lymphomas. In addition, we studied the microRNA expression in the diagnostic lymphoma biopsy. The most strongly induced (miR-326) and suppressed (miR-375) plasma microRNA at diagnosis, when compared with healthy blood donors, were also substantially up- or down-regulated in plasma repository samples taken from several months to up to two years before the blood donors were diagnosed with B-cell lymphoma. Importantly, at these time points the donors had no signs of disease and felt healthy enough to donate blood. In conclusion, this first study of plasma microRNA profiles from apparently healthy individuals, taken several years before B-cell lymphoma diagnosis, suggests that plasma microRNA profiles may be predictive of lymphoma development.


Circulating MicroRNA/blood , Lymphoma, B-Cell/diagnosis , Adult , Aged , Aged, 80 and over , Case-Control Studies , Circulating MicroRNA/genetics , Early Diagnosis , Female , Humans , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Middle Aged , ROC Curve , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
18.
BMC Vet Res ; 16(1): 148, 2020 May 20.
Article En | MEDLINE | ID: mdl-32434525

BACKGROUND: Infection in the oviduct (salpingitis) is the most common bacterial infection in egg laying hens and is mainly caused by Escherichia coli. The disease is responsible for decreased animal welfare, considerable economic loss as well as a risk of horizontal and vertical transmission of pathogenic E. coli. The outcome of salpingitis may be either acute or chronic. It has not yet been clarified whether the pathological manifestation is a result of the characteristics of the E. coli or whether the manifestation is associated with host factors such as host immunity. RESULTS: From the core- and accessory genome analysis and comparison of 62 E. coli no genetic markers were found to be associated to either acute or chronic infection. Twenty of the 62 genomes harboured at least one antimicrobial resistance gene with resistance against sulfonamides being the most common. The increased serum survival and iron chelating genes iss and iroN were highly prevalent in genomes from both acute and chronic salpingitis. CONCLUSION: Our analysis revealed that no genetic markers could differentiate the E. coli isolated from acute versus chronic salpingitis in egg laying hens. The difference in pathological outcome may be related to other factors such as immunological status, genetics and health of the host. These data indicate that salpingitis is another manifestation of colibacillosis.


Escherichia coli Infections/veterinary , Escherichia coli/genetics , Poultry Diseases/microbiology , Salpingitis/veterinary , Animals , Chickens , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Genome, Bacterial , Poultry Diseases/pathology , Salpingitis/microbiology , Salpingitis/pathology , Whole Genome Sequencing
19.
Curr Biol ; 30(6): 1032-1048.e7, 2020 03 23.
Article En | MEDLINE | ID: mdl-32142706

The bacterial phylum Chlamydiae is so far composed of obligate symbionts of eukaryotic hosts. Well known for Chlamydiaceae, pathogens of humans and other animals, Chlamydiae also include so-called environmental lineages that primarily infect microbial eukaryotes. Environmental surveys indicate that Chlamydiae are found in a wider range of environments than anticipated previously. However, the vast majority of this chlamydial diversity has been underexplored, biasing our current understanding of their biology, ecological importance, and evolution. Here, we report that previously undetected and active chlamydial lineages dominate microbial communities in deep anoxic marine sediments taken from the Arctic Mid-Ocean Ridge. Reaching relative abundances of up to 43% of the bacterial community, and a maximum diversity of 163 different species-level taxonomic units, these Chlamydiae represent important community members. Using genome-resolved metagenomics, we reconstructed 24 draft chlamydial genomes, expanding by over a third the known genomic diversity in this phylum. Phylogenomic analyses revealed several novel clades across the phylum, including a previously unknown sister lineage of the Chlamydiaceae, providing new insights into the origin of pathogenicity in this family. We were unable to identify putative eukaryotic hosts for these marine sediment chlamydiae, despite identifying genomic features that may be indicative of host-association. The high abundance and genomic diversity of Chlamydiae in these anoxic marine sediments indicate that some members could play an important, and thus far overlooked, ecological role in such environments and may indicate alternate lifestyle strategies.


Biological Evolution , Geologic Sediments/microbiology , Gram-Negative Bacteria/isolation & purification , Microbiota , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , Arctic Regions , Chlamydiales/classification , Chlamydiales/genetics , Chlamydiales/isolation & purification , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , Oceans and Seas
20.
mSystems ; 5(2)2020 Mar 10.
Article En | MEDLINE | ID: mdl-32156797

Oceanic ridge flank systems represent one of the largest and least-explored microbial habitats on Earth. Fundamental ecological questions regarding community activity, recruitment, and succession in this environment remain unanswered. Here, we investigated ammonia-oxidizing archaea (AOA) in the sediment-buried basalts on the oxic and young ridge flank at North Pond, a sediment-filled pond on the western flank of the Mid-Atlantic Ridge, and compared them with those in the overlying sediments and bottom seawater. Nitrification in the North Pond basement is thermodynamically favorable and is supported by a reaction-transport model simulating the dynamics of nitrate in the crustal fluids. Nitrification rate is estimated to account for 6% to 7% of oxygen consumption, which is similar to the ratios found in marine oxic sediments, suggesting that aerobic mineralization of organic matter is the major ammonium source for crustal nitrifiers. Using the archaeal 16S rRNA and amoA genes as phylogenetic markers, we show that AOA, composed solely of Nitrosopumilaceae, are the major archaeal dwellers at North Pond. Phylogenetic analysis reveals that the crustal AOA communities are distinct from those in the bottom seawater and the upper oxic sediments but are similar to those in the basal part of the overlying sediment column, suggesting either similar environmental selection or the dispersal of microbes across the sediment-basement interface. Additionally, quantitative abundance data suggest enrichment of the dominant Nitrosopumilaceae clade (Eta clade) in the basement compared to the seawater. This study explored AOA and their activity in the upper oceanic crust, and our results have ecological implications for the biogeochemical cycling of nitrogen in the crustal subsurface.IMPORTANCE Ridge flanks represent the major avenue of chemical and heat exchange between the Earth's oceans and the lithosphere and are thought to harbor an enormous and understudied biosphere. However, little is known about the diversity and functionality of the crustal biosphere. Here, we report an indigenous community of archaea specialized in ammonia oxidation (i.e., AOA) in the oxic oceanic crust at North Pond. These AOA are the dominant archaea and are likely responsible for most of the cycling taking place in the first step of nitrification, a feasible nitrogen cycling step in the oxic basement. The crustal AOA community structure significantly differs from that in deep ocean water but is similar to that of the community in the overlying sediments in close proximity. This report links the occurrence of AOA to their metabolic activity in the oxic subseafloor crust and suggests that ecological selection and in situ proliferation may shape the microbial community structure in the rocky subsurface.

...