Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 13(1): 14730, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37679445

Celulose nanofibers are lightweight, recycable, biodegradable, and renewable. Hence, there is a great interest of using them instead of fossil-based components in new materials and biocomposites. In this study, we disclose an environmentally benign (green) one-step reaction approach to fabricate lactic acid ester functionalized cellulose nanofibrils from wood-derived pulp fibers in high yields. This was accomplished by converting wood-derived pulp fibers to nanofibrillated "cellulose lactate" under mild conditions using lactic acid as both the reaction media and catalyst. Thus, in parallel to the cellulose nanofibril production, concurrent lactic acid-catalyzed esterification of lactic acid to the cellulose nanofibers surface occured. The direct lactic acid esterification, which is a surface selective functionalization and reversible (de-attaching the ester groups by cleavage of the ester bonds), of the cellulose nanofibrils was confirmed by low numbers of degree of substitution, and FT-IR analyses. Thus, autocatalytic esterification and cellulose hydrolysis occurred without the need of metal based or a harsh mineral acid catalysts, which has disadvantages such as acid corrosiveness and high recovery cost of acid. Moreover, adding a mineral acid as a co-catalyst significantly decreased the yield of the nanocellulose. The lactic acid media is successfully recycled in multiple reaction cycles producing the corresponding nanocellulose fibers in high yields. The disclosed green cellulose nanofibril production route is industrial relevant and gives direct access to nanocellulose for use in variety of applications such as sustainable filaments, composites, packaging and strengthening of recycled fibers.

2.
ACS Omega ; 7(19): 16288-16297, 2022 May 17.
Article En | MEDLINE | ID: mdl-35601300

This research investigates the catalytic performance of a metal-organic framework (MOF) with a functionalized ligand-UiO-66-NH2-in the oxidative desulfurization of dibenzothiophene (DBT) in n-dodecane as a model fuel mixture (MFM). The solvothermally prepared catalyst was characterized by XRD, FTIR, 1H NMR, SEM, TGA, and MP-AES analyses. A response surface methodology was employed for the experiment design and variable optimization using central composite design (CCD). The effects of reaction conditions on DBT removal efficiency, including temperature (X 1), oxidant agent over sulfur (O/S) mass ratio (X 2), and catalyst over sulfur (C/S) mass ratio (X 3), were assessed. Optimal process conditions for sulfur removal were obtained when the temperature, O/S mass ratio, and C/S mass ratio were 72.6 °C, 1.62 mg/mg, and 12.1 mg/mg, respectively. Under these conditions, 89.7% of DBT was removed from the reaction mixture with a composite desirability score of 0.938. From the results, the temperature has the most significant effect on the oxidative desulfurization reaction. The model F values gave evidence that the quadratic model was well-fitted. The reusability of the MOF catalyst in the ODS reaction was tested and demonstrated a gradual loss of activity over four runs.

...