Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Anaesth Crit Care Pain Med ; : 101389, 2024 May 04.
Article En | MEDLINE | ID: mdl-38710324

Discussions of the environmental impacts of general anesthetics have focused on greenhouse gas (GHG) emissions from inhaled agents, with those of total intravenous anesthesia (TIVA) recently coming to the forefront. Clinical experts are calling for the expansion of research toward life cycle assessment (LCA) to comprehensively study the impact of general anesthetics. We provide an overview of proposed environmental risks, including direct GHG emissions from inhaled anesthetics and non-GHG impacts and indirect GHG emissions from propofol. A practical description of LCA methodology is also provided, as well as how it applies to the study of general anesthesia. We describe available LCA studies comparing the environmental impacts of a lower carbon footprint inhaled anesthetic, sevoflurane, to TIVA/propofol and discuss their life cycle steps: manufacturing, transport, clinical use, and disposal. Significant hotspots of GHG emission were identified as the manufacturing and disposal of sevoflurane and use (attributed to the manufacture of the required syringes and syringe pumps) for propofol. However, the focus of these studies was solely on GHG emissions, excluding other environmental impacts of wasted propofol, such as water/soil toxicity. Other LCA gaps included a lack of comprehensive GHG emission estimates related to the manufacturing of TIVA plastic components, high-temperature incineration of propofol, and gas capture technologies for inhaled anesthetics. Considering that scarce LCA evidence does not allow for a definite conclusion to be drawn regarding the overall environmental impacts of sevoflurane and TIVA, we conclude that current anesthetic practice involving these agents should focus on patient needs and established best practices as more LCA research is accumulated.

2.
Can J Cardiol ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38570114

BACKGROUND: Left atrial appendage closure (LAAC) for stroke prevention is validated in patients with non-valvular atrial fibrillation (NVAF) contraindicated to oral anticoagulation. General anesthesia (GA) is often used for procedural guidance by trans-oesophageal echocardiography (TEE); however, its use may be challenging in some patients. The aim of the study was to evaluate the safety and the mid-term efficacy of a mini-invasive LAAC strategy using micro-TEE under procedural sedation. METHODS: Comparison by propensity score of two cohorts of consecutive patients who underwent LAAC: standard TEE-guided LAAC (3D-TEE under GA) and, mini-invasive LAAC strategy (micro-TEE under procedural sedation). The primary endpoint was a composite of embolic or bleeding events, significant per-procedural complication, and cardiovascular deaths within 3 months after LAAC. RESULTS: In total, 432 patients were included (78.7±8 years old, 32.4% of women, CHA2DS2VASC score:4.9±1.1); 127 patients underwent mini-invasive LAAC strategy and were compared to 305 patients standard TEE-guided LAAC. The mini-invasive strategy was acheived in 122/127 (96.1%) planned patients. The primary endpoint occurred in 11.2% of patients from the mini-invasive LAAC strategy group and in 10.3% of patients from the standard TEE group (absolute difference = 0.9%[-6.4; 4.5], hazard-ratio=1.11[0.56; 2.19], p=0.76). Procedural times, fluoroscopy duration and hospital stays were shorter in the mini-invasive LAAC strategy group (p<0.001). CONCLUSIONS: The mini-invasive LAAC strategy is safe and effective compared to the standard TEE-guided LAAC strategy. A mini-invasive LAAC strategy may also be an important tool to help physicians to treat more patients as LAAC indications evolve in the future.

3.
Clin Nutr ; 43(6): 1343-1352, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677045

BACKGROUND & AIMS: Serum prealbumin is considered to be a sensitive predictor of clinical outcomes and a quality marker for nutrition support. However, its susceptibility to inflammation restricts its usage in critically ill patients according to current guidelines. We assessed the performance of the initial value of prealbumin and dynamic changes for predicting the ICU mortality and the effectiveness of nutrition support in critically ill patients. METHODS: This monocentric study included patients admitted to the ICU between 2009 and 2016, having at least one initial prealbumin value available. Prospectively recorded data were extracted from the electronic ICU charts. We used both univariable and multivariable logistic regressions to estimate the performance of prealbumin for the prediction of ICU mortality. Additionally, the association between prealbumin dynamic changes and nutrition support was assessed via a multivariable linear mixed-effects model and multivariable linear regression. Performing subgroup analysis assisted in identifying patients for whom prealbumin dynamic assessment holds specific relevance. RESULTS: We included 3136 patients with a total of 4942 prealbumin levels available. Both prealbumin measured at ICU admission (adjusted odds-ratio (aOR) 0.04, confidence interval (CI) 95% 0.01-0.23) and its change over the first week (aOR 0.02, CI 95 0.00-0.19) were negatively associated with ICU mortality. Throughout the entire ICU stay, prealbumin dynamic changes were associated with both cumulative energy (estimate: 33.2, standard error (SE) 0.001, p < 0.01) and protein intakes (1.39, SE 0.001, p < 0.01). During the first week of stay, prealbumin change was independently associated with mean energy (6.03e-04, SE 2.32e-04, p < 0.01) and protein intakes (1.97e-02, SE 5.91e-03, p < 0.01). Notably, the association between prealbumin and energy intake was strongest among older or malnourished patients, those suffering from increased inflammation and those with high disease severity. Finally, prealbumin changes were associated with a positive mean nitrogen balance at day 7 only in patients with SOFA <4 (p = 0.047). CONCLUSION: Prealbumin measured at ICU admission and its change during the first-week serve as an accurate predictor of ICU mortality. Prealbumin dynamic assessment may be a reliable tool to estimate the effectiveness of nutrition support in the ICU, especially among high-risk patients.


Biomarkers , Critical Illness , Intensive Care Units , Nutritional Support , Prealbumin , Humans , Critical Illness/therapy , Prealbumin/analysis , Prealbumin/metabolism , Male , Female , Middle Aged , Nutritional Support/methods , Aged , Biomarkers/blood , Hospital Mortality , Nutritional Status , Prospective Studies , Nutrition Assessment
4.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Article En | MEDLINE | ID: mdl-38583855

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Cell Proliferation , Cell Survival , Respiratory Distress Syndrome , Sevoflurane , Wound Healing , Sevoflurane/pharmacology , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Wound Healing/drug effects , Cell Survival/drug effects , A549 Cells , Cell Proliferation/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Movement/drug effects , Anesthetics, Inhalation/pharmacology , Cytokines/metabolism , Autophagy/drug effects , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology
5.
6.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38397090

Volatile anesthetics have been shown in different studies to reduce ischemia reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) facilitates graft evaluation, extends preservation time and potentially enables injury repair and improvement of lung quality. We hypothesized that ventilating lungs with sevoflurane during EVLP would reduce lung injury and improve lung function. We performed a pilot study to test this hypothesis in a slaughterhouse sheep DCD model. Lungs were harvested, flushed and stored on ice for 3 h, after which EVLP was performed for 4 h. Lungs were ventilated with either an FiO2 of 0.4 (EVLP, n = 5) or FiO2 of 0.4 plus sevoflurane at a 2% end-tidal concentration (Cet) (S-EVLP, n = 5). Perfusate, tissue samples and functional measurements were collected and analyzed. A steady state of the target Cet sevoflurane was reached with measurable concentrations in perfusate. Lungs in the S-EVLP group showed significantly better dynamic lung compliance than those in the EVLP group (p = 0.003). Oxygenation capacity was not different in treated lungs for delta partial oxygen pressure (PO2; +3.8 (-4.9/11.1) vs. -11.7 (-12.0/-3.2) kPa, p = 0.151), but there was a trend of a better PO2/FiO2 ratio (p = 0.054). Perfusate ASAT levels in S-EVLP were significantly reduced compared to the control group (198.1 ± 93.66 vs. 223.9 ± 105.7 IU/L, p = 0.02). We conclude that ventilating lungs with sevoflurane during EVLP is feasible and could be useful to improve graft function.


Lung Transplantation , Animals , Sheep , Sevoflurane/pharmacology , Feasibility Studies , Pilot Projects , Organ Preservation , Lung , Perfusion
7.
Panminerva Med ; 66(1): 55-62, 2024 Mar.
Article En | MEDLINE | ID: mdl-38093626

INTRODUCTION: Sepsis-related mortality is decreasing over time after the introduction of "Surviving Sepsis Campaign" Guidelines in 2004. The last Guidelines version collects 93 recommendations, but several interventions supported by randomized evidence of mortality reduction are not included. EVIDENCE ACQUISITION: We performed a systematic review of all randomized controlled trials reporting a statistically significant mortality reduction in septic patients and compared the identified studies to the Surviving Sepsis Campaign Guidelines 2021 to highlight discrepancies. EVIDENCE SYNTHESIS: We identified 83 randomized controlled trials (58 interventions) influencing mortality in sepsis. Only 9/58 of these interventions were included in the Guidelines: lactate measurement and lactate-guided hemodynamic management, procalcitonin-guided antibiotics discontinuation, balanced crystalloids as first choice fluids, albumin infusion, avoidance of starches, noradrenaline as first line vasopressor, vasopressin as an adjunctive vasopressor to noradrenaline, neuromuscular blocking agents in moderate-severe sepsis-associated acute respiratory distress syndrome, and corticosteroids use. Only 11/93 Guidelines recommendations were supported by randomized evidence with mortality difference. Five of the interventions with survival benefit in literature (vitamin C, terlipressin, polymyxin B, liberal transfusion strategy and immunoglobulins) were recommended to avoid in the Guidelines, while 44 interventions were not mentioned, including three interventions (esmolol, omega 3, and external warming) with at least two randomized controlled trials with a documented survival benefit. CONCLUSIONS: Several discrepancies exist between the randomized controlled trials with mortality difference in septic patients and the latest Surviving Sepsis Campaign Guidelines. This systematic review can be of help for improving future guidelines and may guide research on specific promising topics.


Sepsis , Shock, Septic , Humans , Shock, Septic/drug therapy , Sepsis/drug therapy , Adrenal Cortex Hormones , Norepinephrine/therapeutic use , Lactic Acid
8.
Crit Care ; 27(1): 303, 2023 08 01.
Article En | MEDLINE | ID: mdl-37528425

BACKGROUND: Ventilator-free days (VFDs) are a composite endpoint increasingly used as the primary outcome in critical care trials. However, because of the skewed distribution and competitive risk between components, sample size estimation remains challenging. This systematic review was conducted to systematically assess whether the sample size was congruent, as calculated to evaluate VFDs in trials, with VFDs' distribution and the impact of alternative methods on sample size estimation. METHODS: A systematic literature search was conducted within the PubMed and Embase databases for randomized clinical trials in adults with VFDs as the primary outcome until December 2021. We focused on peer-reviewed journals with 2021 impact factors greater than five. After reviewing definitions of VFDs, we extracted the sample size and methods used for its estimation. The data were collected by two independent investigators and recorded in a standardized, pilot-tested forms tool. Sample sizes were calculated using alternative statistical approaches, and risks of bias were assessed with the Cochrane risk-of-bias tool. RESULTS: Of the 26 clinical trials included, 19 (73%) raised "some concerns" when assessing risks of bias. Twenty-four (92%) trials were two-arm superiority trials, and 23 (89%) were conducted at multiple sites. Almost all the trials (96%) were unable to consider the unique distribution of VFDs and death as a competitive risk. Moreover, significant heterogeneity was found in the definitions of VFDs, especially regarding varying start time and type of respiratory support. Methods for sample size estimation were also heterogeneous, and simple models, such as the Mann-Whitney-Wilcoxon rank-sum test, were used in 14 (54%) trials. Finally, the sample sizes calculated varied by a factor of 1.6 to 17.4. CONCLUSIONS: A standardized definition and methodology for VFDs, including the use of a core outcome set, seems to be required. Indeed, this could facilitate the interpretation of findings in clinical trials, as well as their construction, especially the sample size estimation which is a trade-off between cost, ethics, and statistical power. Systematic review registration PROSPERO ID: CRD42021282304. Registered 15 December 2021 ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021282304 ).


Critical Care , Ventilators, Mechanical , Adult , Humans , Sample Size
9.
J Transl Med ; 21(1): 397, 2023 06 18.
Article En | MEDLINE | ID: mdl-37331963

BACKGROUND: Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS: To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1ß, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS: In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS: Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.


Actins , Respiratory Distress Syndrome , Animals , Mice , Sevoflurane/pharmacology , Sevoflurane/metabolism , Sevoflurane/therapeutic use , Actins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Mice, Inbred C57BL , Lung/pathology , Respiratory Distress Syndrome/pathology , Cytokines/metabolism , Permeability , Models, Theoretical
10.
Crit Care ; 27(1): 213, 2023 05 31.
Article En | MEDLINE | ID: mdl-37259157

BACKGROUND: Findings from preclinical studies and one pilot clinical trial suggest potential benefits of epidural analgesia in acute pancreatitis. We aimed to assess the efficacy of thoracic epidural analgesia, in addition to usual care, in improving clinical outcomes of intensive care unit patients with acute pancreatitis. METHODS: A multicenter, open-label, randomized, controlled trial including adult patients with a clinical diagnosis of acute pancreatitis upon admission to the intensive care unit. Participants were randomly assigned (1:1) to a strategy combining thoracic epidural analgesia and usual care (intervention group) or a strategy of usual care alone (control group). The primary outcome was the number of ventilator-free days from randomization until day 30. RESULTS: Between June 2014 and January 2019, 148 patients were enrolled, and 135 patients were included in the intention-to-treat analysis, with 65 patients randomly assigned to the intervention group and 70 to the control group. The number of ventilator-free days did not differ significantly between the intervention and control groups (median [interquartile range], 30 days [15-30] and 30 days [18-30], respectively; median absolute difference of - 0.0 days, 95% CI - 3.3 to 3.3; p = 0.59). Epidural analgesia was significantly associated with longer duration of invasive ventilation (median [interquartile range], 14 days [5-28] versus 6 days [2-13], p = 0.02). CONCLUSIONS: In a population of intensive care unit adults with acute pancreatitis and low requirement for intubation, this first multicenter randomized trial did not show the hypothesized benefit of epidural analgesia in addition to usual care. Safety of epidural analgesia in this setting requires further investigation. TRIAL REGISTRATION: ClinicalTrials.gov registration number NCT02126332 , April 30, 2014.


Analgesia, Epidural , Critical Care , Pancreatitis , Pancreatitis/therapy , Acute Disease , Analgesia, Epidural/adverse effects , Intensive Care Units , Treatment Outcome , Intention to Treat Analysis , Humans , Male , Female , Adult , Middle Aged , Aged
11.
Clin Chem Lab Med ; 61(10): 1740-1749, 2023 09 26.
Article En | MEDLINE | ID: mdl-37078234

OBJECTIVES: The objective of our study is to evaluate the effect of storage temperature and time to analysis on arterial blood gas parameters in order to extend the CLSI recommendations. METHODS: Stability of 12 parameters (pH, pCO2, pO2, Na+, K+, Ca2+, glucose, lactate, hemoglobin, oxyhemoglobin, carboxyhemoglobin, methemoglobin) measured by GEM PREMIER™ 5000 blood gas analyzer was studied at room temperature and at +4 °C (52 patients). The storage times were 30, 45, 60, 90 and 120 min. Stability was evaluated on the difference from baseline, the difference from the analyte-specific measurement uncertainty applied to the baseline value, and the impact of the variation on the clinical interpretation. RESULTS: At room temperature, all parameters except the lactate remained stable for at least 60 min. A statistically significant difference was observed for pH at T45 and T60 and for pCO2 at T60 without modification of clinical interpretation. For lactate, clinical interpretation was modified from T45 and values were outside the range of acceptability defined by the measurement uncertainty. All parameters except pO2 remained stable for at least 120 min at +4 °C. CONCLUSIONS: A one-hour transport at room temperature is compatible with the performance of all the analyses studied except lactate. If the delay exceeds 30 min, the sample should be placed at +4 °C for lactate measurement. If the samples are stored in ice, it is important to note that the pO2 cannot be interpreted.


Blood Glucose , Carboxyhemoglobin , Humans , Carboxyhemoglobin/analysis , Blood Glucose/analysis , Glucose , Lactic Acid , Temperature , Hemoglobins/analysis , Blood Gas Analysis/methods , Electrolytes , Sodium , Ions , Hydrogen-Ion Concentration , Gases
12.
J Clin Med ; 12(3)2023 Jan 30.
Article En | MEDLINE | ID: mdl-36769718

Inhaled sedation was recently approved in Europe as an alternative to intravenous sedative drugs for intensive care unit (ICU) sedation. The aim of this narrative review was to summarize the available data from the literature published between 2005 and 2023 in terms of the efficacy, safety, and potential clinical benefits of inhaled sedation for ICU mechanically ventilated patients. The results indicated that inhaled sedation reduces the time to extubation and weaning from mechanical ventilation and reduces opioid and muscle relaxant consumption, thereby possibly enhancing recovery. Several researchers have reported its potential cardio-protective, anti-inflammatory or bronchodilator properties, alongside its minimal metabolism by the liver and kidney. The reflection devices used with inhaled sedation may increase the instrumental dead space volume and could lead to hypercapnia if the ventilator settings are not optimal and the end tidal carbon dioxide is not monitored. The risk of air pollution can be prevented by the adequate scavenging of the expired gases. Minimizing atmospheric pollution can be achieved through the judicious use of the inhalation sedation for selected groups of ICU patients, where the benefits are maximized compared to intravenous sedation. Very rarely, inhaled sedation can induce malignant hyperthermia, which prompts urgent diagnosis and treatment by the ICU staff. Overall, there is growing evidence to support the benefits of inhaled sedation as an alternative for intravenous sedation in ICU mechanically ventilated patients. The indication and management of any side effects should be clearly set and protocolized by each ICU. More randomized controlled trials (RCTs) are still required to investigate whether inhaled sedation should be prioritized over the current practice of intravenous sedation.

13.
Nutrients ; 15(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36615893

BACKGROUND: Magnesium (Mg) is often used to manage de novo atrial fibrillation (AF) in the emergency department (ED) and intensive care unit (ICU). Point of care measurement of ionized magnesium (iMg) allows a rapid identification of patients with impaired magnesium status, however, unlike ionized calcium, the interpretation of iMg is not entirely understood. Thus, we evaluated iMg reference values, correlation between iMg and plasmatic magnesium (pMg), and the impact of pH and albumin variations on iMg levels. Secondary objectives were to assess the incidence of hypomagnesemia in de novo AF. METHODS: A total of 236 emergency department and intensive care unit patients with de novo AF, and 198 control patients were included. Reference values were determined in the control population. Correlation and concordance between iMg and pMg were studied using calcium (ionized and plasmatic) as a control in the whole study population. The impact of albumin and pH was assessed in the discordant iMg and pMg values. Lastly, we assessed the incidence of ionized hypomagnesemia (hypoMg) among de novo AF. RESULTS: The reference range values established in our study for iMg were: 0.48-0.65 mmol/L (the manufacturers were: 0.45-0.60 mmol/L). A strong correlation was observed between pMg and iMg (r = 0.85), but, unlike for calcium values, there was no significant impact of pH and albumin in iMg/pMg interpretation. The incidence of hypoMg among de novo AF patients was 8.5% (12.7% using our ranges). When using our ranges, we found a significant link (p = 0.01) between hyopMg and hypokalemia. CONCLUSION: We highlight the need for more accurate reference range values of iMg. Furthermore, our results suggest that blood Mg content is not identical to that of calcium. The incidence of ionized hypomagnesemia among de novo AF patients in our study is 8.5%.


Atrial Fibrillation , Magnesium , Humans , Calcium , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Electrolytes , Calcium, Dietary , Albumins
14.
PLoS One ; 17(12): e0278090, 2022.
Article En | MEDLINE | ID: mdl-36580451

BACKGROUND: The COVID-19 pandemic has increased the number of patients in ICUs leading to a worldwide shortage of the intravenous sedative agents obligating physicians to find alternatives including inhaled sedation. Inhaled sedation in French ICU has been previously explored in 2019 (VOL'ICU study). This survey was designed to explore the use of inhaled sedation two years after our first survey and to evaluate how the COVID-19 pandemic has impacted the use of inhaled sedation. METHODS: We designed a national survey, contacting medical directors of French ICUs between June and October 2021. Over a 50-item questionnaire, the survey covered the characteristics of the ICU, data on inhaled sedation, and practical aspects of inhaled ICU sedation for both COVID-19 and non-COVID-19 patients. Answers were compared with the previous survey, VOL'ICU. RESULTS: Among the 405 ICUs contacted, 25% of the questionnaires were recorded. Most ICU directors (87%) knew about the use of inhaled ICU sedation and 63% of them have an inhaled sedation's device in their unit. The COVID-19 pandemic increased the use of inhaled sedation in French ICUs. The main reasons said by the respondent were "need for additional sedative" (62%), "shortage of intravenous sedatives" (38%) and "involved in a clinical trial" (30%). The main reasons for not using inhaled ICU sedation were "device not available" (76%), "lack of familiarity" (60%) and "no training for the teams" (58%). More than 70% of respondents were overall satisfied with the use of inhaled sedation. Almost 80% of respondents stated that inhaled sedation was a seducing alternative to intravenous sedation for management of COVID-19 patients. CONCLUSION: The use of inhaled sedation in ICU has increased fastly in the last 2 years, and is frequently associated with a good satisfaction among the users. Even if the COVID-19 pandemic could have impacted the widespread use of inhaled sedation, it represents an alternative to intravenous sedation for more and more physicians.


COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Hypnotics and Sedatives/therapeutic use , Intensive Care Units , Anesthetics, Intravenous
15.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article En | MEDLINE | ID: mdl-36232959

The roles of thioredoxin-interacting protein (TXNIP) and receptor for advanced glycation end-products (RAGE)-dependent mechanisms of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-driven macrophage activation during acute lung injury are underinvestigated. Cultured THP-1 macrophages were treated with a RAGE agonist (S100A12), with or without a RAGE antagonist; cytokine release and intracytoplasmic production of reactive oxygen species (ROS) were assessed in response to small interfering RNA knockdowns of TXNIP and NLRP3. Lung expressions of TXNIP and NLRP3 and alveolar levels of IL-1ß and S100A12 were measured in mice after acid-induced lung injury, with or without administration of RAGE inhibitors. Alveolar macrophages from patients with acute respiratory distress syndrome and from mechanically ventilated controls were analyzed using fluorescence-activated cell sorting. In vitro, RAGE promoted cytokine release and ROS production in macrophages and upregulated NLRP3 and TXNIP mRNA expression in response to S100A12. TXNIP inhibition downregulated NLRP3 gene expression and RAGE-mediated release of IL-1ß by macrophages in vitro. In vivo, RAGE, NLRP3 and TXNIP lung expressions were upregulated during experimental acute lung injury, a phenomenon being reversed by RAGE inhibition. The numbers of cells expressing RAGE, NLRP3 and TXNIP among a specific subpopulation of CD16+CD14+CD206- ("pro-inflammatory") alveolar macrophages were higher in patients with lung injury. This study provides a novel proof-of-concept of complex RAGE-TXNIP-NLRP3 interactions during macrophage activation in acute lung injury.


Acute Lung Injury , Inflammasomes , Animals , Carrier Proteins/genetics , Cytokines/metabolism , Glycation End Products, Advanced/metabolism , Inflammasomes/metabolism , Macrophages, Alveolar/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , S100A12 Protein , Thioredoxins/genetics , Thioredoxins/metabolism
17.
Intensive Care Med ; 48(9): 1176-1184, 2022 09.
Article En | MEDLINE | ID: mdl-35974189

PURPOSE: To investigate the impact of Macintosh blade size used during direct laryngoscopy (DL) on first-attempt intubation success of orotracheal intubation in French intensive care units (ICUs). We hypothesized that success rate would be higher with Macintosh blade size No3 than with No4. METHODS: Multicenter retrospective observational study based on data from prospective trials conducted in 48 French ICUs of university, and general and private hospitals. After each intubation using Macintosh DL, patients' and operators' characteristics, Macintosh blade size, results of first DL and alternative techniques used, as well as the need of a second operator were collected. Complications rates associated with intubation were investigated. Primary outcome was success rate of first DL using Macintosh blade. RESULTS: A total of 2139 intubations were collected, 629 with a Macintosh blade No3 and 1510 with a No4. Incidence of first-pass intubation after first DL was significantly higher with Macintosh blade No3 (79.5 vs 73.3%, p = 0.0025), despite equivalent Cormack-Lehane scores (p = 0.48). Complications rates were equivalent between groups. Multivariate analysis concluded to a significant impact of Macintosh blade size on first DL success in favor of blade No3 (OR 1.44 [95% CI 1.14-1.84]; p = 0.0025) without any significant center effect on the primary outcome (p = 0.18). Propensity scores and adjustment analyses concluded to equivalent results. CONCLUSION: In the present study, Macintosh blade No3 was associated with improved first-passed DL in French ICUs. However, study design requires the conduct of a nationwide prospective multicenter randomized trial in different settings to confirm these results.


Laryngoscopes , Humans , Intensive Care Units , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Laryngoscopy/methods , Prospective Studies
18.
PLoS One ; 17(8): e0272835, 2022.
Article En | MEDLINE | ID: mdl-36001593

BACKGROUND: Proteinuria results from kidney damage and can be a predictor of illness severity and mortality in the intensive care unit (ICU). However, the optimal timing of proteinuria measurements and the reference values remain undetermined. Our objective was to identify the patterns of proteinuria change associated with mortality in ICU patients with sepsis or shock. METHODS: This monocentric retrospective cohort study performed from April 2010 to April 2018 involved all ICU patients with sepsis or shock and at least two measurements of proteinuria from a 24h-urine collection during the first 10 days of ICU stay, the first of which was made within 48h after ICU admission. We identified proteinuria trajectories by a semi-parametric mixture model and analysed the association between the trajectories and the mortality at day 28 by Cox proportional-hazards model. RESULTS: A total of 3,344 measurements of proteinuria from 659 patients were analysed. Four proteinuria trajectories were identified. Trajectories 1, 2, 3 and 4 comprised 127, 421, 60 and 51 patients, and were characterized by a first proteinuria of 1.14 [0.66-1.55], 0.52 [0.26-0.91], 2.92 [2.38-3.84] and 2.58 [1.75-3.32] g/24h (p<0.001) and a mortality of 24.4%, 38%, 20% and 43% (p = 0.002), respectively. Trajectories 3 and 4 had a high first proteinuria (>2g/24h). Only, the proteinuria of trajectory 4 increased within 3 days following the first measurement and was associated with increased mortality at day 28 (hazard ratio: 2.36 95%CI [1.07-5.19], p = 0.03), regardless of acute renal failure. The factors associated with trajectory 4 were cancer (relative risk: 8.91 95%CI [2.09-38.02], p = 0.003) and use of inotropic drugs (relative risk: 0.17 95%CI [0.04-0.69], p = 0.01). CONCLUSION: This exploratory study of ICU patients with sepsis or shock identified four proteinuria trajectories with distinct patterns of proteinuria change over time and mortality rates. These results provide novel insights into renal pathophysiology and may be helpful to investigate subphenotypes of kidney injury among ICU patients in future studies.


Sepsis , Shock , Critical Illness , Hospital Mortality , Humans , Intensive Care Units , Proteinuria/complications , Retrospective Studies , Sepsis/complications
19.
Anaesth Crit Care Pain Med ; 41(5): 101133, 2022 10.
Article En | MEDLINE | ID: mdl-35907598

Inhaled sedation with halogenated agents, such as isoflurane or sevoflurane, is now feasible in intensive care unit (ICU) patients through dedicated vaporisers and scavenging systems. Such a sedation strategy requires specific equipment and adequate training of ICU teams. Isoflurane and sevoflurane have ideal pharmacological properties that allow efficient, well-tolerated, and titratable light-to-deep sedation. In addition to their function as sedative agents, these molecules may have clinical benefits that could be especially relevant to ICU patients. Our goal was to summarise the pharmacological basis and practical aspects of inhaled ICU sedation, review the available evidence supporting inhaled sedation as a viable alternative to intravenous sedation, and discuss the remaining areas of uncertainty and future perspectives of development.


Anesthetics, Inhalation , Isoflurane , Critical Care , Humans , Hypnotics and Sedatives , Intensive Care Units , Isoflurane/pharmacology , Isoflurane/therapeutic use , Sevoflurane
20.
Anaesth Crit Care Pain Med ; 41(5): 101121, 2022 10.
Article En | MEDLINE | ID: mdl-35781076

While the coronavirus disease 2019 (COVID-19) pandemic placed a heavy burden on healthcare systems worldwide, it also induced urgent mobilisation of research teams to develop treatments preventing or curing the disease and its consequences. It has, therefore, challenged critical care research to rapidly focus on specific fields while forcing critical care physicians to make difficult ethical decisions. This narrative review aims to summarise critical care research -from organisation to research fields- in this pandemic setting and to highlight opportunities to improve research efficiency in the future, based on what is learned from COVID-19. This pressure on research revealed, i.e., (i) the need to harmonise regulatory processes between countries, allowing simplified organisation of international research networks to improve their efficiency in answering large-scale questions; (ii) the importance of developing translational research from which therapeutic innovations can emerge; (iii) the need for improved triage and predictive scores to rationalise admission to the intensive care unit. In this context, key areas for future critical care research and better pandemic preparedness are artificial intelligence applied to healthcare, characterisation of long-term symptoms, and ethical considerations. Such collaborative research efforts should involve groups from both high and low-to-middle income countries to propose worldwide solutions. As a conclusion, stress tests on healthcare organisations should be viewed as opportunities to design new research frameworks and strategies. Worldwide availability of research networks ready to operate is essential to be prepared for next pandemics. Importantly, researchers and physicians should prioritise realistic and ethical goals for both clinical care and research.


COVID-19 , Pandemics , Artificial Intelligence , Critical Care , Delivery of Health Care , Humans , Pandemics/prevention & control
...