Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Eng Sci Med ; 47(3): 1037-1050, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38862778

RESUMEN

Alzheimer's disease (AD) is a progressive and incurable neurologi-cal disorder with a rising mortality rate, worsened by error-prone, time-intensive, and expensive clinical diagnosis methods. Automatic AD detection methods using hand-crafted Electroencephalogram (EEG) signal features lack accuracy and reliability. A lightweight convolution neural network for AD detection (LCADNet) is investigated to extract disease-specific features while reducing the detection time. The LCADNet uses two convolutional layers for extracting complex EEG features, two fully connected layers for selecting disease-specific features, and a softmax layer for predicting AD detection probability. A max-pooling layer interlaced between convolutional layers decreases the time-domain redundancy in the EEG signal. The efficiency of the LCADNet and four pre-trained models using transfer learning is compared using a publicly available AD detection dataset. The LCADNet shows the lowest computation complexity in terms of both the number of floating point operations and inference time and the highest classification performance across six measures. The generalization of the LCADNet is assessed by cross-testing it with two other publicly available AD detection datasets. It outperforms existing EEG-based AD detection methods with an accuracy of 98.50%. The LCADNet may be a valuable aid for neurologists and its Python implemen- tation can be found at github.com/SandeepSangle12/LCADNet.git.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Redes Neurales de la Computación , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Procesamiento de Señales Asistido por Computador , Algoritmos
2.
Cancers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509267

RESUMEN

Skin cancer is a major public health concern around the world. Skin cancer identification is critical for effective treatment and improved results. Deep learning models have shown considerable promise in assisting dermatologists in skin cancer diagnosis. This study proposes SBXception: a shallower and broader variant of the Xception network. It uses Xception as the base model for skin cancer classification and increases its performance by reducing the depth and expanding the breadth of the architecture. We used the HAM10000 dataset, which contains 10,015 dermatoscopic images of skin lesions classified into seven categories, for training and testing the proposed model. Using the HAM10000 dataset, we fine-tuned the new model and reached an accuracy of 96.97% on a holdout test set. SBXception also achieved significant performance enhancement with 54.27% fewer training parameters and reduced training time compared to the base model. Our findings show that reducing and expanding the Xception model architecture can greatly improve its performance in skin cancer categorization.

3.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823415

RESUMEN

Human injuries and casualties at entertaining, religious, or political crowd events often occur due to the lack of proper crowd safety management. For instance, for a large scale moving crowd, a minor accident can create a panic for the people to start stampede. Although many smart video surveillance tools, inspired by the recent advanced artificial intelligence (AI) technology and machine learning (ML) algorithms, enable object detection and identification, it is still challenging to predict the crowd mobility in real-time for preventing potential disasters. In this paper, we propose an intelligent crowd engineering platform using mobility characterization and analytics named ICE-MoCha. ICE-MoCha is to assist safety management for mobile crowd events by predicting and thus helping to prevent potential disasters through real-time radio frequency (RF) data characterization and analysis. The existing video surveillance based approaches lack scalability thus have limitations in its capability for wide open areas of crowd events. Via effectively integrating RF signal analysis, our approach can enhance safety management for mobile crowd. We particularly tackle the problems of identification, speed, and direction detection for the mobile group, among various crowd mobility characteristics. We then apply those group semantics to track the crowd status and predict any potential accidents and disasters. Taking the advantages of power-efficiency, cost-effectiveness, and ubiquitous availability, we specifically use and analyze a Bluetooth low energy (BLE) signal. We have conducted experiments of ICE-MoCha in a real crowd event as well as controlled indoor and outdoor lab environments. The results show the feasibility of ICE-MoCha detecting the mobile crowd characteristics in real-time, indicating it can effectively help the crowd management tasks to avoid potential crowd movement related incidents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA