Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Placenta ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39069441

RESUMEN

Immunofluorescence microscopy is extensively used in characterization of trophoblast differentiation in vitro. However, such data is primarily used to confirm the presence of protein markers or qualitatively compare levels of protein markers across experimental conditions. Imaging data, when processed and analyzed appropriately can provide quantitative and spatial information, and provide biological insight. Towards this end, here we present MATroph, an open-source MATLAB-based computational tool to process images generated by immunofluorescent microscopy. MATroph automatically executes a series of image processing operations, including the classification of red, blue, and green channels from images, background extraction, morphological operations, and image filtering. From the isolated blue channels corresponding to nuclear staining, this tool generates numerical values for cell number. Additionally, relative levels and spatial location of proteins are obtained by mapping red and green channel pixels to blue pixels by assigning minimum pixel distance between the blue and other color objects. Thus, this tool provides information about intracellular protein accumulation areas. Additionally, this tool can also classify cells as single cells or part of colonies, and extract information on protein levels for each; this is particularly useful for quantitative studies on extravillous trophoblast maturation. We provide a user-guide to analyze the relative levels of markers relevant to human trophoblast stem cell self-renewal and differentiation. Importantly, MATroph is composed of a simple MATLAB algorithm, and its implementation requires minimal expertise in programming.

2.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746283

RESUMEN

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool for modeling the placental cytotrophoblast (CTB) in vitro. hTSCs were originally derived from CTBs of the first trimester placenta or blastocyst-stage embryos in trophoblast stem cell medium (TSCM) that contains epidermal growth factor (EGF), the glycogen synthase kinase-beta (GSK3ß) inhibitor CHIR99021, the transforming growth factor-beta (TGFß) inhibitors A83-01 and SB431542, valproic acid (VPA), and the Rho-associated protein kinase (ROCK) inhibitor Y-27632. Here we show that hTSCs can be derived from CTBs isolated from the term placenta, using TSCM supplemented with a low concentration of mitochondrial pyruvate uptake inhibitor UK5099 and lipid-rich albumin (TUA medium). Notably, hTSCs could not be derived from term CTBs using TSCM alone, or in the absence of either UK5099 or lipid-rich albumin. Strikingly, hTSCs cultured in TUA medium for a few passages could be transitioned into TSCM and cultured thereafter in TSCM. hTSCs from term CTBs cultured in TUA medium as well as those transitioned into and cultured in TSCM thereafter could be differentiated to the extravillous trophoblast and syncytiotrophoblast lineages and exhibited high transcriptome similarity with hTSCs derived from first trimester CTBs. We anticipate that these results will enable facile derivation of hTSCs from normal and pathological placentas at birth with diverse genetic backgrounds and facilitate in vitro mechanistic studies in trophoblast biology.

3.
Viruses ; 15(3)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36992349

RESUMEN

The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.


Asunto(s)
Antiinfecciosos , COVID-19 , Humanos , Antivirales/farmacología , COVID-19/prevención & control , Antiinfecciosos/farmacología , Antibacterianos/química , Péptidos/farmacología
4.
J Biol Chem ; 299(5): 104650, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972789

RESUMEN

Human trophoblast stem cells (hTSCs) have emerged as a powerful tool to model early placental development in vitro. Analogous to the epithelial cytotrophoblast in the placenta, hTSCs can differentiate into cells of the extravillous trophoblast (EVT) lineage or the multinucleate syncytiotrophoblast (STB). Here we present a chemically defined culture system for STB and EVT differentiation of hTSCs. Notably, in contrast to current approaches, we neither utilize forskolin for STB formation nor transforming growth factor-beta (TGFß) inhibitors or a passage step for EVT differentiation. Strikingly, the presence of a single additional extracellular cue-laminin-111-switched the terminal differentiation of hTSCs from STB to the EVT lineage under these conditions. In the absence of laminin-111, STB formation occurred, with cell fusion comparable to that obtained with differentiation mediated by forskolin; however, in the presence of laminin-111, hTSCs differentiated to the EVT lineage. Protein expression of nuclear hypoxia-inducible factors (HIF1α and HIF2α) was upregulated during EVT differentiation mediated by laminin-111 exposure. A heterogeneous mixture of Notch1+ EVTs in colonies and HLA-G+ single-cell EVTs were obtained without a passage step, reminiscent of heterogeneity in vivo. Further analysis showed that inhibition of TGFß signaling affected both STB and EVT differentiation mediated by laminin-111 exposure. TGFß inhibition during EVT differentiation resulted in decreased HLA-G expression and increased Notch1 expression. On the other hand, TGFß inhibition prevented STB formation. The chemically defined culture system for hTSC differentiation established herein facilitates quantitative analysis of heterogeneity that arises during hTSC differentiation and will enable mechanistic studies in vitro.


Asunto(s)
Diferenciación Celular , Técnicas Citológicas , Laminina , Células Madre , Trofoblastos , Humanos , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , Colforsina/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Laminina/farmacología , Células Madre/citología , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Medios de Cultivo/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas Citológicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA