Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396906

RESUMEN

Following ischemia/reperfusion, AMPA receptors (AMPARs) mediate pathologic delayed neuronal death through sustained expression of calcium-permeable AMPARs, leading to excitotoxicity. Preventing the surface removal of GluA2-containing AMPARs may yield new therapeutic targets for the treatment of ischemia/reperfusion. This study utilized acute organotypic hippocampal slices from aged male and female Sprague Dawley rats and subjected them to oxygen-glucose deprivation/reperfusion (OGD/R) to examine the mechanisms underlying the internalization and degradation of GluA2-containing AMPARs. We determined the effect of OGD/R on AMPAR subunits at the protein and mRNA transcript levels utilizing Western blot and RT-qPCR, respectively. Hippocampal slices from male and female rats responded to OGD/R in a paradoxical manner with respect to AMPARs. GluA1 and GluA2 AMPAR subunits were degraded following OGD/R in male rats but were increased in female rats. There was a rapid decrease in GRIA1 (GluA1) and GRIA2 (GluA2) mRNA levels in the male hippocampus following ischemic insult, but this was not observed in females. These data indicate a sex-dependent difference in how AMPARs in the hippocampus respond to ischemic insult, and may help explain, in part, why premenopausal women have a lower incidence/severity of ischemic stroke compared with men of the same age.


Asunto(s)
Hipocampo , Receptores AMPA , Humanos , Ratas , Femenino , Animales , Masculino , Anciano , Ratas Sprague-Dawley , Receptores AMPA/genética , Receptores AMPA/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Oxígeno/metabolismo , Glucosa/metabolismo , Reperfusión , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Pharmaceutics ; 13(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946313

RESUMEN

Strokes remain one of the leading causes of disability within the United States. Despite an enormous amount of research effort within the scientific community, very few therapeutics are available for stroke patients. Cytotoxic accumulation of intracellular calcium is a well-studied phenomenon that occurs following ischemic stroke. This intracellular calcium overload results from excessive release of the excitatory neurotransmitter glutamate, a process known as excitotoxicity. Calcium-permeable AMPA receptors (AMPARs), lacking the GluA2 subunit, contribute to calcium cytotoxicity and subsequent neuronal death. The internalization and subsequent degradation of GluA2 AMPAR subunits following oxygen-glucose deprivation/reperfusion (OGD/R) is, at least in part, mediated by protein-interacting with C kinase-1 (PICK1). The purpose of the present study is to evaluate whether treatment with a PICK1 inhibitor, FSC231, prevents the OGD/R-induced degradation of the GluA2 AMPAR subunit. Utilizing an acute rodent hippocampal slice model system, we determined that pretreatment with FSC231 prevented the OGD/R-induced association of PICK1-GluA2. FSC231 treatment during OGD/R rescues total GluA2 AMPAR subunit protein levels. This suggests that the interaction between GluA2 and PICK1 serves as an important step in the ischemic/reperfusion-induced reduction in total GluA2 levels.

3.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450848

RESUMEN

Stroke is the fifth leading cause of death annually in the United States. Ischemic stroke occurs when a blood vessel supplying the brain is occluded. The hippocampus is particularly susceptible to AMPA receptor-mediated delayed neuronal death as a result of ischemic/reperfusion injury. AMPA receptors composed of a GluA2 subunit are impermeable to calcium due to a post-transcriptional modification in the channel pore of the GluA2 subunit. GluA2 undergoes internalization and is subsequently degraded following ischemia/reperfusion. The subsequent increase in the expression of GluA2-lacking, Ca2+-permeable AMPARs results in excitotoxicity and eventually delayed neuronal death. Following ischemia/reperfusion, there is increased production of superoxide radicals. This study describes how the internalization and degradation of GluA1 and GluA2 AMPAR subunits following ischemia/reperfusion is mediated through an oxidative stress signaling cascade. U251-MG cells were transiently transfected with fluorescently tagged GluA1 and GluA2, and different Rab proteins to observe AMPAR endocytic trafficking following oxygen glucose-deprivation/reperfusion (OGD/R), an in vitro model for ischemia/reperfusion. Pretreatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a superoxide dismutase mimetic, ameliorated the OGD/R-induced, but not agonist-induced, internalization and degradation of GluA1 and GluA2 AMPAR subunits. Specifically, MnTMPyP prevented the increased colocalization of GluA1 and GluA2 with Rab5, an early endosomal marker, and with Rab7, a late endosomal marker, but did not affect the colocalization of GluA1 with Rab11, a marker for recycling endosomes. These data indicate that oxidative stress may play a vital role in AMPAR-mediated cell death following ischemic/reperfusion injury.


Asunto(s)
Isquemia/metabolismo , Estrés Oxidativo , Receptores AMPA/metabolismo , Daño por Reperfusión/metabolismo , Supervivencia Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Isquemia/etiología , Metaloporfirinas/farmacología , Neuronas/metabolismo , Subunidades de Proteína , Transporte de Proteínas , Proteolisis , Receptores AMPA/química , Daño por Reperfusión/etiología
4.
J Neurochem ; 132(5): 504-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25475532

RESUMEN

A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2-amino-3-(3-hydroxy-5-methylisoazol-4-yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2-lacking Ca(2+) /Zn(2+) permeable AMPARs. These GluA2-lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion-induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre-treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R-mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1- and GluA2- involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R-induced association of GluA2 with protein interacting with C kinase-1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion-induced AMPAR subunit composition switch and a potential therapeutic target.


Asunto(s)
Isquemia Encefálica/metabolismo , NADPH Oxidasas/metabolismo , Receptores AMPA/metabolismo , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Immunoblotting , Inmunoprecipitación , Masculino , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/patología
5.
J Mol Signal ; 7(1): 15, 2012 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-22958338

RESUMEN

BACKGROUND: Evidence exists that oxidative stress promotes the tyrosine phosphorylation of N-methyl-D-aspartate receptor (NMDAR) subunits during post-ischemic reperfusion of brain tissue. Increased tyrosine phosphorylation of NMDAR NR2A subunits has been reported to potentiate receptor function and exacerbate NMDAR-induced excitotoxicity. Though the effect of ischemia on tyrosine phosphorylation of NMDAR subunits has been well documented, the oxidative stress signaling cascades mediating the enhanced tyrosine phosphorylation of NR2A subunits remain unclear. RESULTS: We report that the reactive oxygen species (ROS) generator NADPH oxidase mediates an oxidative stress-signaling cascade involved in the increased tyrosine phosphorylation of the NR2A subunit in post-ischemic differentiated SH-SY5Y neuroblastoma cells. Inhibition of NADPH oxidase attenuated the increased tyrosine phosphorylation of the NMDAR NR2A subunit, while inhibition of ROS production from mitochondrial or xanthine oxidase sources failed to dampen the post-ischemic increase in tyrosine phosphorylation of the NR2A subunit. Additionally, inhibition of NADPH oxidase blunted the interaction of activated Src Family Kinases (SFKs) with PSD-95 induced by ischemia/reperfusion. Lastly, inhibition of NADPH oxidase also markedly reduced cell death in post-ischemic SH-SY5Y cells stimulated by NMDA. CONCLUSIONS: These data indicate that NADPH oxidase has a key role in facilitating NMDAR NR2A tyrosine phosphorylation via SFK activation during post-ischemic reperfusion.

6.
J Mol Signal ; 3: 20, 2008 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19055777

RESUMEN

BACKGROUND: Sustained agonist-promoted ubiquitination of beta-arrestin has been correlated with increased stability of the GPCR - beta-arrestin complex. Moreover, abrogation of beta-arrestin ubiquitination has been reported to inhibit receptor internalization with minimal effects on receptor degradation. RESULTS: Herein we report that agonist activation of M1 mAChRs produces a sustained beta-arrestin ubiquitination but no stable co-localization with beta-arrestin. In contrast, sustained ubiquitination of beta-arrestin by activation of M2 mAChRs does result in stable co-localization between the M2 mAChR and beta-arrestin. Internalization of receptors was unaffected by proteasome inhibitors, but down-regulation was significantly reduced, suggesting a role for the ubiquitination machinery in promoting down-regulation of the receptors. Given the ubiquitination status of beta-arrestin following agonist treatment, we sought to determine the effects of beta-arrestin ubiquitination on M1 and M2 mAChR down-regulation. A constitutively ubiquitinated beta-arrestin 2 chimera in which ubiquitin is fused to the C-terminus of beta-arrestin 2 (YFP-beta-arrestin 2-Ub) significantly increased agonist-promoted down-regulation of both M1 and M2 mAChRs, with the effect substantially higher on the M2 mAChR. Based on this observation, we were interested in examining the effects of disruption of potential ubiquitination sites in the beta-arrestin sequence on receptor down-regulation. Agonist-promoted internalization of the M2 mAChR was not affected by expression of beta-arrestin lysine mutants lacking putative ubiquitination sites, beta-arrestin 2K18R, K107R, K108R, K207R, K296R, while down-regulation and stable co-localiztion of the receptor with this beta-arrestin lysine mutant were significantly reduced. Interestingly, expression of beta-arrestin 2K18R, K107R, K108R, K207R, K296R increased the agonist-promoted down-regulation of the M1 mAChR but did not result in a stable co-localiztion of the receptor with this beta-arrestin lysine mutant. CONCLUSION: These findings indicate that ubiquitination of beta-arrestin has a distinct role in the differential trafficking and degradation of M1 and M2 mAChRs.

7.
J Neurochem ; 96(2): 510-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16336219

RESUMEN

Oxidative stress has been implicated in impairing muscarinic acetylcholine receptor (mAChR) signaling activity. It remains unclear, however, whether alterations in the cell surface distribution of mAChRs following oxidative stress contribute to the diminished mAChR signaling activity. We report here that M1 and M2 mAChRs, stably expressed in Chinese hamster ovary cells, undergo sequestration following transient hypoxic-induced oxidative stress (2% O2). Sequestration of M1 and M2 mAChRs following transient hypoxia was associated with an increase in phosphorylation of these receptors. Over-expression of a catalytically inactive G protein-coupled receptor kinase 2 (GRK2 K220R) blocked the increased phosphorylation and sequestration of the M2, but not M1, mAChRs following transient hypoxia. Hypoxia induced phosphorylation and sequestration of the M1 mAChR was, however, blocked by over-expression of a catalytically inactive casein kinase 1 alpha (CK1alpha K46R). These results are the first demonstration that M1 and M2 mAChRs undergo sequestration following transient hypoxia. The data suggest that increased phosphorylation of M1 and M2 mAChRs underlies the mechanism responsible for sequestration of these receptors following transient hypoxia. We report here that distinct pathways involving CK1alpha and GRK2 mediated sequestration of M1 and M2 mAChRs following transient hypoxic-induced oxidative stress.


Asunto(s)
Hipoxia/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Animales , Células CHO , Quinasa de la Caseína I/metabolismo , Muerte Celular , Cricetinae , Cricetulus , Humanos , Ligandos , Estrés Oxidativo , Fosforilación , Proteínas/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M2/genética , Factores de Tiempo , Quinasas de Receptores Adrenérgicos beta/metabolismo
8.
J Mol Signal ; 1: 7, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17224084

RESUMEN

BACKGROUND: Muscarinic acetylcholine receptors (mAChRs) undergo agonist-promoted internalization, but evidence suggesting that the mechanism of internalization is beta-arrestin dependent has been contradictory and unclear. Previous studies using heterologous over-expression of wild type or dominant-negative forms of beta-arrestins have reported that agonist-promoted internalization of M2 mAChRs is a beta-arrestin- and clathrin-independent phenomenon. In order to circumvent the complications associated with the presence of endogenous beta-arrestin that may have existed in these earlier studies, we examined agonist-promoted internalization of the M2 mAChR in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin knockout mice that lack expression of either one or both isoforms of beta-arrestin (beta-arrestin 1 and 2). RESULTS: In wild type MEF cells transiently expressing M2 mAChRs, 40% of surface M2 mAChRs underwent internalization and sorted into intracellular compartments following agonist stimulation. In contrast, M2 mAChRs failed to undergo internalization and sorting into intracellular compartments in MEF beta-arrestin double knockout cells following agonist stimulation. In double knockout cells, expression of either beta-arrestin 1 or 2 isoforms resulted in rescue of agonist-promoted internalization. Stimulation of M2 mAChRs led to a stable co-localization with GFP-tagged beta-arrestin within endocytic structures in multiple cell lines; the compartment to which beta-arrestin localized was determined to be the early endosome. Agonist-promoted internalization of M2 mAChRs was moderately rescued in MEF beta-arrestin 1 and 2 double knockout cells expressing exogenous arrestin mutants that were selectively defective in interactions with clathrin (beta-arrestin 2 DeltaLIELD), AP-2 (beta-arrestin 2-F391A), or both clathrin/AP-2. Expression of a truncated carboxy-terminal region of beta-arrestin 1 (319-418) completely abrogated agonist-promoted internalization of M2 mAChRs in wild type MEF cells. CONCLUSION: In summary, this study demonstrates that agonist-promoted internalization of M2 mAChRs is beta-arrestin- and clathrin-dependent, and that the receptor stably co-localizes with beta-arrestin in early endosomal vesicles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...