Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Sensors (Basel) ; 20(15)2020 Aug 04.
Article En | MEDLINE | ID: mdl-32759665

Piezoelectric micromachined ultrasound transducers (PMUT) incorporating lead zirconate titanate PbZr0.52Ti0.48O3 (PZT) thin films were investigated for miniaturized high-frequency ultrasound systems. A recently developed process to remove a PMUT from an underlying silicon (Si) substrate has enabled curved arrays to be readily formed. This research aimed to improve the design of flexible PMUT arrays using PZFlex, a finite element method software package. A 10 MHz PMUT 2D array working in 3-1 mode was designed. A circular unit-cell was structured from the top, with concentric layers of platinum (Pt)/PZT/Pt/titanium (Ti) on a polyimide (PI) substrate. Pulse-echo and spectral response analyses predicted a center frequency of 10 MHz and bandwidth of 87% under water load and air backing. A 2D array, consisting of the 256 (16 × 16) unit-cells, was created and characterized in terms of pulse-echo and spectral responses, surface displacement profiles, crosstalk, and beam profiles. The 2D array showed: decreased bandwidth due to protracted oscillation decay and guided wave effects; mechanical focal length at 2.9 mm; 3.7 mm depth of field for -6 dB; and -55.6 dB crosstalk. Finite element-based virtual prototyping identified figures of merit-center frequency, bandwidth, depth of field, and crosstalk-that could be optimized to design robust, flexible PMUT arrays.

2.
Opt Express ; 26(21): 27757-27772, 2018 Oct 15.
Article En | MEDLINE | ID: mdl-30469836

Lynx, a next generation X-ray observatory concept currently under study, requires lightweight, high spatial resolution X-ray mirrors. Here we detail the development and fabrication of one of the candidate technologies for Lynx, piezoelectric adjustable X-ray optics. These X-ray mirrors are thin glass shell mirrors with Cr/Ir X-ray reflective coatings on the mirror side and piezoelectric thin film actuators on the actuator side. Magnetron sputtering was used to deposit metal electrodes and metal-oxide piezoelectric layers. The piezoelectric (Pb0.995(Zr0.52Ti0.48)0.99Nb0.01O3) was divided into 112 independent piezoelectric actuators, with 100% yield achieved. We discuss the fabrication procedure, residual thermal stresses and tuning of the Cr/Ir coating stress for the purposes of stress balancing.

3.
IEEE Trans Nanobioscience ; 17(2): 97-101, 2018 04.
Article En | MEDLINE | ID: mdl-29870332

We present an experimental protocol for fabricating enclosed microfluidic channels using polymethylglutarimide (PMGI). PMGI is optically transparent, biocompatible, and can be used to readily fabricate micrometer-scale lateral and vertical dimension channels using conventional photolithography. The low auto-fluorescence intensity of PMGI facilitates imaging of analytes without interference. The hydrophilicity of PMGI allows fluid exchange in micrometer-scale channels using a hydrogel as an interface without an external pump. As a demonstration, we assemble fluorescently-labeled lipid bilayers in PMGI microfluidic channels and show that PMGI has negligible auto-fluorescence intensity compared to the lipid bilayer. PMGI channels together with hydrogel-assisted fluidic exchange provides a simple approach to fabricate micrometer and sub-micrometer scale fluidic channels for optofluidics, molecular biology, and other medical diagnostic and sensing applications.


Hydrogels/chemistry , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Imides/chemistry , Piperidines/chemistry , Polymers/chemistry
4.
Adv Mater ; 28(45): 10095-10102, 2016 Dec.
Article En | MEDLINE | ID: mdl-27717022

A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors.

6.
Nat Commun ; 7: 10908, 2016 Mar 10.
Article En | MEDLINE | ID: mdl-26961271

Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current-voltage characteristics and interpreted by using the classical metal oxide-semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm(2) V(-1) s(-1)), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current-voltage characterization are overestimated by one order of magnitude or more.


Naphthacenes/chemistry , Silicon Dioxide/chemistry , Transistors, Electronic , Dielectric Spectroscopy , Materials Testing
7.
ACS Appl Mater Interfaces ; 6(10): 7028-31, 2014 May 28.
Article En | MEDLINE | ID: mdl-24818868

We describe pH-controlled selective etching of atomic layer deposition (ALD) Al2O3 over ZnO. Film thickness as a function of etch exposure was measured by spectroscopic ellipsometry. We find that alkaline aqueous solutions with pH between about 9 and 12 will etch Al2O3 at useful rate with minimal attack of ZnO. Highly selective etching of Al2O3 over ZnO (selectivity >400:1) and an Al2O3 etch rate of ∼50 nm/min can be obtained using a pH 12 etch solution at 60 °C.

8.
Article En | MEDLINE | ID: mdl-21937309

Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr(0.52)Ti(0.48)O(3) thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.

9.
Integr Biol (Camb) ; 3(1): 57-64, 2011 Jan.
Article En | MEDLINE | ID: mdl-21031221

The mitotic spindle is a dynamic assembly of microtubules and microtubule-associated proteins that controls the directed movement of chromosomes during cell division. Because proper segregation of the duplicated genome requires that each daughter cell receives precisely one copy of each chromosome, numerous overlapping mechanisms have evolved to ensure that every chromosome is transported to the cell equator during metaphase. However, due to the inherent redundancy in this system, cellular studies using gene knockdowns or small molecule inhibitors have an inherent limit in defining the sufficiency of precise molecular mechanisms as well as quantifying aspects of their mechanical performance. Thus, there exists a need for novel experimental approaches that reconstitute important aspects of the mitotic spindle in vitro. Here, we show that by microfabricating Cr electrodes on quartz substrates and micropatterning proteins on the electrode surfaces, AC electric fields can be used to assemble opposed bundles of aligned and uniformly oriented microtubules as found in the mitotic spindle. By immobilizing microtubule ends on each electrode, analogous to anchoring at centrosomes, solutions of motor or microtubule binding proteins can be introduced and their resulting dynamics analyzed. Using this "artificial mitotic spindle" we show that beads functionalized with plus-end kinesin motors move in an oscillatory manner analogous to the movements of chromosomes and severed chromosome arms during metaphase. Hence, features of directional instability, an established characteristic of metaphase chromosome dynamics, can be reconstituted in vitro using a pair of uniformly oriented microtubule bundles and a plus-end kinesin functionalized bead.


Kinesins/metabolism , Spindle Apparatus/metabolism , Animals , Biological Transport, Active , Cattle , Electrophoresis , In Vitro Techniques , Microtubules/metabolism , Mitosis/physiology , Models, Biological , Molecular Motor Proteins/metabolism , Systems Biology , Tubulin/metabolism
10.
Article En | MEDLINE | ID: mdl-22255041

We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 µm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 µm thick, 500 µm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS.


Biosensing Techniques , Body Temperature , Brain/physiology , Calibration , Humans
11.
Small ; 4(9): 1371-81, 2008 Sep.
Article En | MEDLINE | ID: mdl-18720434

The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.


Electrons , Microtubules/chemistry , Animals , Buffers , Cattle , Computer Simulation , Electrodes , Kinesins/chemistry , Kinetics , Osmolar Concentration , Temperature , Water/chemistry
12.
J Am Chem Soc ; 130(9): 2706-7, 2008 Mar 05.
Article En | MEDLINE | ID: mdl-18260664

We report dramatic improvements in the stability and crystallinity arising from partial fluorination of soluble anthradithiophene derivatives. These fluorinated materials still behave as p-type semiconductors but with dramatic increases in thermal and photostability compared to the non-fluorinated derivatives. The triethylsilyl-substituted material forms highly crystalline films even from spin-cast solutions, leading to devices with maximum hole mobility greater than 1.0 cm(2)/V s. In contrast, the triisopropylsilyl derivative forms large, high-quality crystals that could serve as the substrate for transistor fabrication. For this compound, mobility as high as 0.1 cm(2)/V s was measured on the free-standing crystal.


Heterocyclic Compounds, 4 or More Rings/chemistry , Thiophenes/chemistry , Crystallization , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Molecular Structure , Semiconductors , Solubility , Stereoisomerism
13.
Biomed Microdevices ; 9(2): 175-84, 2007 Apr.
Article En | MEDLINE | ID: mdl-17195111

The kinesin-microtubule system has emerged as a versatile model system for biologically-derived microscale transport. While kinesin motors in cells transport cargo along static microtubule tracks, for in vitro transport applications it is preferable to invert the system and transport cargo-functionalized microtubules along immobilized kinesin motors. However, for efficient cargo transport and to enable this novel transport system to be interfaced with traditional microfluidics, it is important to fabricate enclosed microchannels that are compatible with kinesin motors and microtubules, that enable fluorescence imaging of microtubule movement, and that provide fluidic connections for sample introduction. Here we construct a three-tier hierarchical system of microfluidic channels that links microscale transport channels to macroscopic fluid connections. Shallow microchannels (5 microm wide and 1 microm deep) are etched in a glass substrate and bonded to a cover glass using PMMA as an adhesive, while intermediate channels (approximately 100 microm wide) serve as reservoirs and connect to 250 microm deep microchannels that hold fine gauge tubing for fluid injection. To demonstrate the utility of this device, we first show the performance of a directional rectifier that redirects 96% of moving microtubules and, because any microtubules that detach rapidly rebind to the motor-coated surface, suffers no microtubule loss over time. Second, we develop an approach, using a headless kinesin construct, to eliminate gradients in motor adsorption and microtubule binding in the enclosed channels, which enables precise control of kinesin density in the microchannels. Finally, we show that a 60 microm diameter circular ring functionalized with motors concentrates and aligns bundles of approximately 3000 uniformly oriented microtubules, while suffering negligible ATP depletion. These aligned isopolar microtubules are an important tool for microscale transport applications and can be employed as a model in vitro system for studying kinesin-driven microtubule organization in cells.


Microfluidic Analytical Techniques/instrumentation , Micromanipulation/instrumentation , Microtubules/chemistry , Microtubules/ultrastructure , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/ultrastructure , Equipment Design , Equipment Failure Analysis , Microfluidic Analytical Techniques/methods , Micromanipulation/methods , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Protein Conformation
14.
ACS Nano ; 1(1): 6-9, 2007 Aug.
Article En | MEDLINE | ID: mdl-19203124

Scaling of the conventional planar complementary metal oxide semiconductor (CMOS) faces many challenges. Top-down fabricated gate-all-around Si nanowire FinFETs, which are compatible with the CMOS processes, offer an opportunity to circumvent these limitations to boost the device scalability and performance. Beyond applications in CMOS technology, the thus fabricated Si nanowire arrays can be explored as biosensors, providing a possible route to multiplexed label-free electronic chips for molecular diagnostics.


Metals/chemistry , Nanowires/chemistry , Oxides/chemistry , Semiconductors , Societies, Scientific , Biosensing Techniques , Transistors, Electronic
15.
Article En | MEDLINE | ID: mdl-18276533

High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr(0.52)Ti(0.48)O(3) (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxidesemiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-microm process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.


Image Enhancement/instrumentation , Microelectrodes , Signal Processing, Computer-Assisted/instrumentation , Transducers , Ultrasonography/instrumentation , Electrochemistry/instrumentation , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Miniaturization , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography/methods
16.
Nat Mater ; 4(8): 581-2, 2005 Aug.
Article En | MEDLINE | ID: mdl-16056279
17.
J Am Chem Soc ; 127(14): 4986-7, 2005 Apr 13.
Article En | MEDLINE | ID: mdl-15810810

We present the device parameters for organic field-effect transistors fabricated from solution-deposited films of functionalized pentacene and anthradithiophenes. These materials are easily prepared in one or two steps from commercially available starting materials and are purified by simple recrystallization. For a solution-deposited film of functionalized pentacene, hole mobility of 0.17 cm2/V.s was measured. The functionalized anthradithiophenes showed behavior strongly dependent on the substituents, with hole mobilities as high as 1.0 cm2/V.s.

18.
Biomed Microdevices ; 6(1): 67-74, 2004 Mar.
Article En | MEDLINE | ID: mdl-15307447

As biomolecular detection systems shrink in size, there is an increasing demand for systems that transport and position materials at micron- and nanoscale dimensions. Our goal is to combine cellular transport machinery-kinesin molecular motors and microtubules-with integrated optoelectronics into a hybrid biological/engineered microdevice that will bind, transport, and detect specific proteins, DNA/RNA molecules, viruses, or cells. For microscale transport, 1.5 microm deep channels were created with SU-8 photoresist on glass, kinesin motors adsorbed to the bottom of the channels, and the channel walls used to bend and redirect microtubules moving over the immobilized motors. Novel channel geometries were investigated as a means to redirect and sort microtubules moving in these channels. We show that DC and AC electric fields are sufficient to transport microtubules in solution, establishing an approach for redirecting microtubules moving in channels. Finally, we inverted the geometry to demonstrate that kinesins can transport gold nanowires along surface immobilized microtubules, providing a model for nanoscale directed assembly.


Electrophoresis/instrumentation , Kinesins/chemistry , Micromanipulation/instrumentation , Microtubules/chemistry , Molecular Motor Proteins/chemistry , Physical Stimulation/instrumentation , Specimen Handling/instrumentation , Cell Separation/instrumentation , Cell Separation/methods , Electromagnetic Fields , Electronics, Medical , Equipment Design , Equipment Failure Analysis , Flow Cytometry/instrumentation , Flow Cytometry/methods , Kinesins/radiation effects , Kinesins/ultrastructure , Micromanipulation/methods , Microtubules/radiation effects , Microtubules/ultrastructure , Miniaturization/methods , Molecular Motor Proteins/radiation effects , Molecular Motor Proteins/ultrastructure , Motion , Nanotechnology/instrumentation , Nanotechnology/methods , Physical Stimulation/methods , Protein Binding , Specimen Handling/methods , Stress, Mechanical
19.
J Am Chem Soc ; 124(15): 4020-6, 2002 Apr 17.
Article En | MEDLINE | ID: mdl-11942840

Metal nanowires containing in-wire monolayer junctions of 16-mercaptohexanoic acid were made by replication of the pores of 70 nm diameter polycarbonate track etch membranes. Au was electrochemically deposited halfway through the 6 microm long pores and a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid was adsorbed on top. A thin layer of Au was then electrolessly grown to form a metal cap separated from the bottom part of the wire by the SAM. Electron micrographs showed that the bottom and top metal segments were separated by an approximately 2 nm thick organic monolayer. Current-voltage measurements of individual nanowires confirmed that the organic monolayer could be contacted electrically on the top and bottom by the metal nanowire segments without introducing electrical short circuits that penetrate the monolayer. The values of the electrical properties for zero-bias resistance, current density, and breakdown field strength were within the ranges expected for a well-ordered alkanethiol SAM of this thickness.

...