Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 3(4): 725-733, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881563

RESUMEN

Background: Learning complex navigation routes increases hippocampal volume in humans, but it is not clear whether this growth impacts behaviors outside the learning situation or what cellular mechanisms are involved. Methods: We trained rats with pharmacogenetic suppression of adult neurogenesis and littermate controls in 3 mazes over 3 weeks and tested novelty approach behavior several days after maze exposure. We then measured hippocampus and prelimbic cortex volumes using magnetic resonance imaging and assessed neuronal and astrocyte morphology. Finally, we investigated the activation and behavioral role of the ventral CA1 (vCA1)-to-prelimbic pathway using immediate-early genes and DREADDs (designer receptors exclusively activated by designer drugs). Results: Maze training led to volume increase of both the vCA1 region of the hippocampus and the prelimbic region of the neocortex compared with rats that followed fixed paths. Growth was also apparent in individual neurons and astrocytes in these 2 regions, and behavioral testing showed increased novelty approach in maze-trained rats in 2 different tests. Suppressing adult neurogenesis prevented the effects on structure and approach behavior after maze training without affecting maze learning itself. The vCA1 neurons projecting to the prelimbic area were more activated by novelty in maze-trained animals, and suppression of this pathway decreased approach behavior. Conclusions: Rewarded navigational learning experiences induce volumetric and morphologic growth in the vCA1 and prelimbic cortex and enhance activation of the circuit connecting these 2 regions. Both the structural and behavioral effects of maze training require ongoing adult neurogenesis, suggesting a role for new neurons in experience-driven increases in novelty exploration.

2.
Mol Cell ; 78(1): 85-95.e8, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032531

RESUMEN

Imprinted genes with parental-biased allelic expression are frequently co-regulated and enriched in common biological pathways. Here, we functionally characterize a large cluster of microRNAs (miRNAs) expressed from the maternally inherited allele ("maternally expressed") to explore the molecular and cellular consequences of imprinted miRNA activity. Using an induced neuron (iN) culture system, we show that maternally expressed miRNAs from the miR-379/410 cluster direct the RNA-induced silencing complex (RISC) to transcriptional and developmental regulators, including paternally expressed transcripts like Plagl1. Maternal deletion of this imprinted miRNA cluster resulted in increased protein levels of several targets and upregulation of a broader transcriptional program regulating synaptic transmission and neuronal function. A subset of the transcriptional changes resulting from miR-379/410 deletion can be attributed to de-repression of Plagl1. These data suggest maternally expressed miRNAs antagonize paternally driven gene programs in neurons.


Asunto(s)
Impresión Genómica , MicroARNs/metabolismo , Neuronas/metabolismo , Animales , Proteínas Argonautas/metabolismo , Línea Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Potenciales Postsinápticos Excitadores , Eliminación de Gen , Ratones , MicroARNs/genética , Neurogénesis/genética , Neuronas/fisiología , Complejo Silenciador Inducido por ARN/metabolismo , Transmisión Sináptica/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...