Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Res Sq ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39108481

RESUMEN

Gut microbial metabolites have been theorized to play a causative role in the pathophysiology of autism spectrum disorder (ASD). This hypothesis is based on results from mechanistic preclinical studies and several correlational studies showing differences in gut microbial composition between ASD subjects and neurotypical (NT) controls. However, alterations in how the human brain interacts with the gut microbiome in ASD have not been examined. In this cross-sectional, case-control observational study, fecal metabolomics, task-based functional magnetic resonance imaging (fMRI), and behavioral assessments were obtained from 43 ASD and 41 NT children aged 8-17. The fMRI tasks were based on socio-emotional and sensory paradigms that commonly show strong evoked brain differences in ASD participants. General linear models and mediational modeling were applied to examine the links between tryptophan metabolism and evoked brain activity and behavior. Results indicated that fecal levels of specific tryptophan-related metabolites were associated with: 1) brain activity atypicalities in regions previously implicated in ASD (i.e., insula and cingulate); and 2) ASD severity and symptomatology (i.e., ADOS scores, disgust propensity, and sensory sensitivities). Importantly, activity in the mid-insula and mid-cingulate significantly mediated relationships between the microbial tryptophan metabolites, indolelactate and tryptophan betaine, and ASD severity and disgust sensitivity. To our knowledge, this is the first study to elucidate how interactions between gut metabolites and brain activity may impact autism symptomatology, particularly in functional brain pathways associated with vagal and interoceptive/emotion processing.

2.
Gut ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122361

RESUMEN

OBJECTIVE: IBD is characterised by dysbiosis, but it remains unclear to what extent dysbiosis develops in unaffected at-risk individuals. To address this, we investigated age-related patterns of faecal and serum markers of dysbiosis in high-risk multiplex IBD families (two or more affected first-degree relatives). DESIGN: Faecal and serum samples were collected from multiplex IBD and control families (95 IBD, 292 unaffected, 51 controls). Findings were validated in independent cohorts of 616 and 1173 subjects including patients with IBD, infants born to mothers with IBD and controls. 16S rRNA gene sequencing and global untargeted metabolomics profiling of faeces and serum were performed. RESULTS: Microbial and metabolomic parameters of dysbiosis progressively decreased from infancy until age 8. This microbial maturation process was slower in infants born to mothers with IBD. After age 15, dysbiosis steadily increased in unaffected relatives throughout adulthood. Dysbiosis was accompanied by marked shifts in the faecal metabolome and, to a lesser extent, the serum metabolome. Faecal and serum metabolomics dysbiosis indices were validated in an independent cohort. Dysbiosis was associated with elevated antimicrobial serologies but not with faecal calprotectin. Dysbiosis metrics differentiated IBD from non-IBD comparably to serologies, with a model combining calprotectin, faecal metabolomics dysbiosis index and serology score demonstrating highest accuracy. CONCLUSION: These findings support that dysbiosis exists as a pre-disease state detectable by faecal and serum biomarkers for IBD risk prediction. Given the expansion of disease-modifying agents and non-invasive imaging, the indices developed here may facilitate earlier diagnoses and improved management in at-risk individuals.

3.
medRxiv ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39211890

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a female-predominant disorder of brain-gut interactions. Our previous study on colonic mucosal microbiota demonstrated significant differences between IBS bowel habit subtypes and showed that gut microbiota is associated with abdominal pain in IBS patients. However, there is no consensus on sex-related differences in mucosal microbiota in IBS compared to healthy controls (HC). We aimed to identify sex-related differences in the mucosal microbes associated with IBS. METHODS: Sigmoid mucosal biopsies were obtained from 97 Rome+ IBS patients and 54 healthy controls (HC). Mucosal microbiome was characterized using 16S rRNA sequencing and analyzed and general linear models were used to test group differences between IBS diagnosis and sex. Sex-specific relationships between mucosal microbiome and IBS symptoms were assessed using sparse partial least squares (sPLS) regression. RESULTS: Beta diversity was significantly different between men and women overall (p=.03) but not within IBS or HC. IBS women showed lower abundance of Catenibacterium and Ruminoclstridium_9 and increased abundance of Bacteroides, Escherichia/Shigella, Lachnoclostridium and Ruminococcaceae compared to men with IBS (p<0.05). However, healthy women had a lower abundance of six distinct genera compared to healthy men. In women, higher IBS symptoms were associated with an increased abundance of bacteria including prevotella_9, and paraprevotella, however, in men, IBS symptoms were associated with increased abundances of genera such as Dialister. Interestingly, increased abundance of Desulfovibrio was associated with higher symptoms in women but lower symptoms in men. CONCLUSION: There are distinct sex-related differences in the mucosal microbiome between IBS and healthy participants supporting the importance of studying sex-specific mechanisms in IBS pathophysiology.

4.
Front Microbiol ; 15: 1407555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184030

RESUMEN

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 25% of the population and is the leading cause for liver-related mortality. Bariatric surgery is a well-known treatment for MASLD and obesity. Understanding the fundamental mechanisms by which bariatric surgery can alter MASLD can lead to new avenues of therapy and research. Previous studies have identified the microbiome's role in bariatric surgery and in inflammatory immune cell populations. The host innate immune system modulates hepatic inflammation and fibrosis, and thus the progression of MASLD. The precise role of immune cell types in the pathogenesis of MASLD remains an active area of investigation. The aim of this study was to understand the interplay between microbiota composition post-bariatric surgery and the immune system in MASLD. Methods: Eighteen morbidly obese females undergoing sleeve gastrectomy were followed pre-and post-surgery. Stool from four patients, showing resolved MASLD post-surgery with sustained weight loss, was transplanted into antibiotic treated mice. Mice received pre-or post-surgery stool and were fed a standard or high-fat diet. Bodyweight, food intake, and physiological parameters were tracked weekly. Metabolic parameters were measured post-study termination. Results: The human study revealed that bariatric surgery led to significant weight loss (p > 0.05), decreased inflammatory markers, and improved glucose levels six months post-surgery. Patients with weight loss of 20% or more showed distinct changes in blood metabolites and gut microbiome composition, notably an increase in Bacteroides. The mouse model confirmed surgery-induced microbiome changes to be a major factor in the reduction of markers and attenuation of MASLD progression. Mice receiving post-surgery fecal transplants had significantly less weight gain and liver steatosis compared to pre-surgery recipients. There was also a significant decrease in inflammatory cytokines interferon gamma, interleukin 2, interleukin 15, and mig. This was accompanied by alterations in liver immunophenotype, including an increase in natural killer T cells and reduction of Kupfer cells in the post-surgery transplant group. Discussion: Our findings suggest surgery induced microbial changes significantly reduce inflammatory markers and fatty liver progression. The results indicate a potential causal link between the microbiome and the host immune system, possibly mediated through modulation of liver NKT and Kupffer cells.

5.
Res Sq ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39184081

RESUMEN

Background: Brainstem nuclei play a critical role in both ascending monoaminergic modulation of cortical function and arousal, and in descending bulbospinal pain modulation. Even though sex-related differences in the function of both systems have been reported in animal models, a complete understanding of sex differences, as well as menopausal effects, in brainstem connectivity in humans is lacking. This study evaluated resting-state connectivity of the dorsal raphe nucleus (DRN), right and left locus coeruleus complex (LCC), and periaqueductal gray (PAG) according to sex and menopausal status in healthy individuals. In addition, relationships between systemic estrogen levels and brainstem-network connectivity were examined in a subset of participants. Methods: Resting-state fMRI was performed in 50 healthy men (age, 31.2 ± 8.0 years), 53 healthy premenopausal women (age, 24.7 ± 7.3 years; 22 in the follicular phase, 31 in the luteal phase), and 20 postmenopausal women (age, 54.6 ± 7.2 years). Permutation Analysis of Linear Models (5000 permutations) was used to evaluate differences in brainstem-network connectivity according to sex and menopausal status, controlling for age. In 10 men and 17 women (9 premenopausal; 8 postmenopausal), estrogen and estrogen metabolite levels in plasma and stool were determined by liquid chromatography-mass spectrometry/mass spectrometry. Relationships between estrogen levels and brainstem-network connectivity were evaluated by partial least squares analysis. Results: Left LCC-executive control network (ECN) connectivity showed an overall sex difference (p = 0.02), with higher connectivity in women than in men; however, this was mainly due to differences between men and pre-menopausal women (p = 0.008). Additional sex differences were dependent on menopausal status: PAG-default mode network (DMN) connectivity was higher in postmenopausal women than in men (p = 0.04), and PAG-sensorimotor network (SMN) connectivity was higher in premenopausal women than in men (p = 0.03) and postmenopausal women (p = 0.007). Notably, higher free 2-hydroxyestrone levels in stool were associated with higher PAG-SMN and PAG-DMN connectivity in premenopausal women (p < 0.01). Conclusions: Healthy women show higher brainstem-network connectivity involved in cognitive control, sensorimotor function, and self-relevant processes than men, dependent on their menopausal status. Further, 2-hydroxyestrone, implicated in pain, may modulate PAG connectivity in premenopausal women. These findings may relate to differential vulnerabilities to chronic stress-sensitive disorders at different life stages.

6.
Cell Host Microbe ; 32(7): 1048-1049, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991502

RESUMEN

Gestational diabetes mellitus (GDM) is associated with increased risk of metabolic and neurodevelopmental disorders in offspring. In this issue of Cell Host & Microbe, Wang et al. provide evidence that changes in the gut microbiome of mothers with GDM may lead to dysbiosis in their infants and altered development in a sex-dependent manner.


Asunto(s)
Diabetes Gestacional , Disbiosis , Microbioma Gastrointestinal , Diabetes Gestacional/microbiología , Diabetes Gestacional/metabolismo , Embarazo , Microbioma Gastrointestinal/fisiología , Humanos , Femenino , Disbiosis/microbiología , Lactante , Masculino , Recién Nacido
7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000289

RESUMEN

Inflammatory bowel disease (IBD) is an immunologically complex disorder involving genetic, microbial, and environmental risk factors. Its global burden has continued to rise since industrialization, with epidemiological studies suggesting that ambient particulate matter (PM) in air pollution could be a contributing factor. Prior animal studies have shown that oral PM10 exposure promotes intestinal inflammation in a genetic IBD model and that PM2.5 inhalation exposure can increase intestinal levels of pro-inflammatory cytokines. PM10 and PM2.5 include ultrafine particles (UFP), which have an aerodynamic diameter of <0.10 µm and biophysical and biochemical properties that promote toxicity. UFP inhalation, however, has not been previously studied in the context of murine models of IBD. Here, we demonstrated that ambient PM is toxic to cultured Caco-2 intestinal epithelial cells and examined whether UFP inhalation affected acute colitis induced by dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid. C57BL/6J mice were exposed to filtered air (FA) or various types of ambient PM reaerosolized in the ultrafine size range at ~300 µg/m3, 6 h/day, 3-5 days/week, starting 7-10 days before disease induction. No differences in weight change, clinical disease activity, or histology were observed between the PM and FA-exposed groups. In conclusion, UFP inhalation exposure did not exacerbate intestinal inflammation in acute, chemically-induced colitis models.


Asunto(s)
Colitis , Sulfato de Dextran , Ratones Endogámicos C57BL , Material Particulado , Ácido Trinitrobencenosulfónico , Material Particulado/toxicidad , Animales , Colitis/inducido químicamente , Colitis/patología , Ratones , Humanos , Sulfato de Dextran/toxicidad , Células CACO-2 , Ácido Trinitrobencenosulfónico/toxicidad , Ácido Trinitrobencenosulfónico/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células Epiteliales/metabolismo , Modelos Animales de Enfermedad , Masculino , Tamaño de la Partícula
8.
PLoS Pathog ; 20(7): e1012380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028765

RESUMEN

Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.


Asunto(s)
Alelos , Clavibacter , Especificidad del Huésped , Enfermedades de las Plantas , Solanum lycopersicum , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Clavibacter/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Solanum melongena/microbiología , Solanum melongena/genética , Virulencia/genética , Variación Genética
10.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948750

RESUMEN

The global epidemic of drug-resistant Candida auris continues unabated. We do not know what caused the unprecedented appearance of pan-drug resistant (PDR) Candida auris strains in a hospitalized patient in New York; the initial report highlighted both known and unique mutations in the prominent gene targets of azoles, amphotericin B, echinocandins, and flucytosine antifungal drugs. However, the factors that allow C. auris to acquire multi-drug resistance and pan-drug resistance are not known. Therefore, we conducted a comprehensive genomic, transcriptomic, and phenomic analysis to better understand PDR C. auris . Among 1,570 genetic variants in drug-resistant C. auris , 299 were unique to PDR strains. The whole genome sequencing results suggested perturbations in genes associated with nucleotide biosynthesis, mRNA processing, and nuclear export of mRNA. Whole transcriptome sequencing of PDR C. auris revealed two genes to be significantly differentially expressed - a DNA repair protein and DNA replication-dependent chromatin assembly factor 1. Of 59 novel transcripts, 12 candidate transcripts had no known homology among expressed transcripts found in other organisms. We observed no fitness defects among multi-drug resistant (MDR) and PDR C. auris strains grown in nutrient-deficient or - enriched media at different temperatures. Phenotypic profiling revealed wider adaptability to nitrogenous nutrients with an uptick in the utilization of substrates critical in upper glycolysis and tricarboxylic acid cycle. Structural modelling of 33-amino acid deletion in the gene for uracil phosphoribosyl transferase suggested an alternate route in C. auris to generate uracil monophosphate that does not accommodate 5-fluorouracil as a substrate. Overall, we find evidence of metabolic adaptations in MDR and PDR C. auris in response to antifungal drug lethality without deleterious fitness costs.

11.
Front Neurosci ; 18: 1363094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576870

RESUMEN

Introduction: Serotonin (5-HT) is critical for neurodevelopment and the serotonin transporter (SERT) modulates serotonin levels. Perturbed prenatal and postnatal dietary exposures affect the developing offspring predisposing to neurobehavioral disorders in the adult. We hypothesized that the postnatal brain 5-HT-SERT imbalance associated with gut dysbiosis forms the contributing gut-brain axis dependent mechanism responsible for such ultimate phenotypes. Methods: Employing maternal diet restricted (IUGR, n=8) and high fat+high fructose (HFhf, n=6) dietary modifications, rodent brain serotonin was assessed temporally by ELISA and SERT by quantitative Western blot analysis. Simultaneously, colonic microbiome studies were performed. Results: At early postnatal (P) day 2 no changes in the IUGR, but a ~24% reduction in serotonin (p = 0.00005) in the HFhf group occurred, particularly in the males (p = 0.000007) revealing a male versus female difference (p = 0.006). No such changes in SERT concentrations emerged. At late P21 the IUGR group reared on HFhf (IUGR/HFhf, (n = 4) diet revealed increased serotonin by ~53% in males (p = 0.0001) and 36% in females (p = 0.023). While only females demonstrated a ~40% decrease in serotonin (p = 0.010), the males only trended lower without a significant change within the HFhf group (p = 0.146). SERT on the other hand was no different in HFhf or IUGR/RC, with only the female IUGR/HFhf revealing a 28% decrease (p = 0.036). In colonic microbiome studies, serotonin-producing Bacteriodes increased with decreased Lactobacillus at P2, while the serotonin-producing Streptococcus species increased in IUGR/HFhf at P21. Sex-specific changes emerged in association with brain serotonin or SERT in the case of Alistipase, Anaeroplasma, Blautia, Doria, Lactococcus, Proteus, and Roseburia genera. Discussion: We conclude that an imbalanced 5-HT-SERT axis during postnatal brain development is sex-specific and induced by maternal dietary modifications related to postnatal gut dysbiosis. We speculate that these early changes albeit transient may permanently alter critical neural maturational processes affecting circuitry formation, thereby perturbing the neuropsychiatric equipoise.

12.
NPJ Parkinsons Dis ; 10(1): 89, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649365

RESUMEN

It has been suggested that gut microbiota influence Parkinson's disease (PD) via the gut-brain axis. Here, we examine associations between diet and gut microbiome composition and its predicted functional pathways in patients with PD. We assessed gut microbiota in fecal samples from 85 PD patients in central California using 16S rRNA gene sequencing. Diet quality was assessed by calculating the Healthy Eating Index 2015 (HEI-2015) based on the Diet History Questionnaire II. We examined associations of diet quality, fiber, and added sugar intake with microbial diversity, composition, taxon abundance, and predicted metagenomic profiles, adjusting for age, sex, race/ethnicity, and sequencing platform. Higher HEI scores and fiber intake were associated with an increase in putative anti-inflammatory butyrate-producing bacteria, such as the genera Butyricicoccus and Coprococcus 1. Conversely, higher added sugar intake was associated with an increase in putative pro-inflammatory bacteria, such as the genera Klebsiella. Predictive metagenomics suggested that bacterial genes involved in the biosynthesis of lipopolysaccharide decreased with higher HEI scores, whereas a simultaneous decrease in genes involved in taurine degradation indicates less neuroinflammation. We found that a healthy diet, fiber, and added sugar intake affect the gut microbiome composition and its predicted metagenomic function in PD patients. This suggests that a healthy diet may support gut microbiome that has a positive influence on PD risk and progression.

13.
Cancer Med ; 13(9): e7212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686626

RESUMEN

BACKGROUND: A phase I clinical study for patients with locally advanced H&N cancer with a new class of botanical drug APG-157 provided hints of potential synergy with immunotherapy. We sought to evaluate the efficacy of the combination of APG-157 and immune checkpoint inhibitors. METHODS: CCL23, UM-SCC1 (human), and SCCVII (HPV-), MEER (HPV+) (murine) H&N cancer cell lines were utilized for in vitro and in vivo studies. We measured tumor growth by treating the mice with APG-157, anti-PD-1, and anti-CTLA-4 antibody combinations (8 groups). The tumor microenvironments were assessed by multi-color flow cytometry, immunohistochemistry, and RNA-seq analysis. Fecal microbiome was analyzed by 16S rRNA sequence. RESULTS: Among the eight treatment groups, APG-157 + anti-CTLA-4 demonstrated the best tumor growth suppression (p = 0.0065 compared to the control), followed by anti-PD-1 + anti-CTLA-4 treatment group (p = 0.48 compared to the control). Immunophenotype showed over 30% of CD8+ T cells in APG-157 + anti-CTLA-4 group compared to 4%-5% of CD8+ T cells for the control group. Differential gene expression analysis revealed that APG-157 + anti-CTLA-4 group showed an enriched set of genes for inflammatory response and apoptotic signaling pathways. The fecal microbiome analysis showed a substantial difference of lactobacillus genus among groups, highest for APG-157 + anti-CTLA-4 treatment group. We were unable to perform correlative studies for MEER model as there was tumor growth suppression with all treatment conditions, except for the untreated control group. CONCLUSIONS: The results indicate that APG-157 and immune checkpoint inhibitor combination treatment could potentially lead to improved tumor control.


Asunto(s)
Antígeno CTLA-4 , Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Animales , Ratones , Antígeno CTLA-4/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Humanos , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Modelos Animales de Enfermedad
14.
ACR Open Rheumatol ; 6(7): 421-427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653503

RESUMEN

OBJECTIVE: Emerging research suggests that rheumatoid arthritis (RA) is associated with intestinal dysbiosis. This prospective pilot study evaluates changes in intestinal microbial composition in patients with RA initiating treatment with either methotrexate (MTX) or a tumor necrosis factor inhibitor (TNFi). METHODS: Consecutive patients, fulfilling the 2010 American College of Rheumatology/EULAR classification criteria for RA, who started treatment with either MTX or TNFi delivered a stool sample upon initiation of immunosuppression and 3 months later. A 16S ribosomal RNA gene-based validated microbiota test (GA-map Dysbiosis Index Score [DIS], Genetic Analysis, Oslo, Norway) was used to evaluate for the presence and degree of dysbiosis. Fecal levels of Prevotella copri (P. copri) were analyzed by custom-made quantitative polymerase chain reaction. Changes in microbial composition were analyzed in relation to changes in disease activity, as measured by the disease activity score based on 28-joint counts, using C-reactive protein. RESULTS: At baseline, dysbiosis was present in 33 of 50 (66%) participants and more common in participants with more than 2 years of disease duration (P = 0.019). At the 3-month follow-up, 27 of 50 (54%) were good treatment responders and the DIS had improved in 14 of 50 (28%). Participants initiating TNFi more often exhibited improvement in the DIS compared with those initiating MTX (P = 0.031). P. copri was identified in 32 of 50 (64%) at baseline. An improvement in disease activity score based on 28-joint counts, using C-reactive protein was associated with a simultaneous decrease in P. copri abundance (rs = 0.30, P = 0.036). CONCLUSION: This study affirms that dysbiosis is a feature of RA. Although patients were not randomized to MTX or TNFi, the findings suggest that specific therapies may differentially modulate the gastrointestinal microbiota in RA. The association between P. copri and treatment response requires further study.

15.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627687

RESUMEN

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad de Parkinson , Plaguicidas , Anciano , Humanos , Bacterias , Compuestos Organofosforados , Plaguicidas/efectos adversos , ARN Ribosómico 16S/genética
16.
Gut Liver ; 18(4): 611-620, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38509701

RESUMEN

Background/Aims: While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods: In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results: The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions: The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.


Asunto(s)
Metilación de ADN , Mucosa Gástrica , Microbioma Gastrointestinal , Helicobacter pylori , Neoplasias Gástricas , Humanos , Masculino , Femenino , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Persona de Mediana Edad , Estudios de Casos y Controles , Helicobacter pylori/genética , Mucosa Gástrica/microbiología , Microbioma Gastrointestinal/genética , Proteína 1 Relacionada con Twist/genética , Anciano , MicroARNs/análisis , Proteínas Nucleares/genética , Gastritis/microbiología , Gastritis/genética , Biomarcadores de Tumor/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Infecciones por Helicobacter/microbiología , Metaplasia/microbiología , Metaplasia/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Homeodominio
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38555475

RESUMEN

The lack of interoperable data standards among reference genome data-sharing platforms inhibits cross-platform analysis while increasing the risk of data provenance loss. Here, we describe the FAIR bioHeaders Reference genome (FHR), a metadata standard guided by the principles of Findability, Accessibility, Interoperability and Reuse (FAIR) in addition to the principles of Transparency, Responsibility, User focus, Sustainability and Technology. The objective of FHR is to provide an extensive set of data serialisation methods and minimum data field requirements while still maintaining extensibility, flexibility and expressivity in an increasingly decentralised genomic data ecosystem. The effort needed to implement FHR is low; FHR's design philosophy ensures easy implementation while retaining the benefits gained from recording both machine and human-readable provenance.


Asunto(s)
Programas Informáticos , Humanos , Genoma , Genómica , Difusión de la Información
18.
Microbiol Spectr ; 12(4): e0413823, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38426767

RESUMEN

Chemistry in eukaryotic intercellular spaces is shaped by both hosts and symbiotic microorganisms such as bacteria. Pathogenic microorganisms like barley-associated Xanthomonas translucens (Xt) swiftly overtake the inner leaf tissue becoming the dominant microbial community member during disease development. The dynamic metabolic changes due to Xt pathogenesis in the mesophyll spaces remain unknown. Genomic group I of Xt consists of two barley-infecting lineages: pathovar translucens (Xtt) and pathovar undulosa (Xtu). Xtu and Xtt, although genomically distinct, cause similar water-soaked lesions. To define the metabolic signals associated with inner leaf colonization, we used untargeted metabolomics to characterize Xtu and Xtt metabolism signatures associated with mesophyll growth. We found that mesophyll apoplast fluid from infected tissue yielded a distinct metabolic profile and shift from catabolic to anabolic processes over time compared to water-infiltrated control. The pathways with the most differentially expressed metabolites by time were glycolysis, tricarboxylic acid cycle, sucrose metabolism, pentose interconversion, amino acids, galactose, and purine metabolism. Hierarchical clustering and principal component analysis showed that metabolic changes were more affected by the time point rather than the individual colonization of the inner leaves by Xtt compared to Xtu. Overall, in this study, we identified metabolic pathways that explain carbon and nitrogen usage during host-bacterial interactions over time for mesophyll tissue colonization. This foundational research provides initial insights into shared metabolic strategies of inner leaf colonization niche occupation by related but phylogenetically distinct phyllosphere bacteria. IMPORTANCE: The phyllosphere is a habitat for microorganisms including pathogenic bacteria. Metabolic shifts in the inner leaf spaces for most plant-microbe interactions are unknown, especially for Xanthomonas species in understudied plants like barley (Hordeum vulgare). Xanthomonas translucens pv. translucens (Xtt) and Xanthomonas translucens pv. undulosa (Xtu) are phylogenomically distinct, but both colonize barley leaves for pathogenesis. In this study, we used untargeted metabolomics to shed light on Xtu and Xtt metabolic signatures. Our findings revealed a dynamic metabolic landscape that changes over time, rather than exhibiting a pattern associated with individual pathovars. These results provide initial insights into the metabolic mechanisms of X. translucens inner leaf pathogenesis.


Asunto(s)
Hordeum , Xanthomonas , Hordeum/microbiología , Xanthomonas/genética , Hojas de la Planta , Agua
19.
Plant Dis ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389385

RESUMEN

In May 2023, pennycress (Thlaspi arvense, L.) lines undergoing seed production in the Walnut Street Greenhouse at the University of Wisconsin-Madison displayed symptoms of chlorosis and black necrotic leaf spots (Fig. S1-A). Lesions eventually enlarged to 1-2 cm in diameter, became necrotic, and coalesced to cover a substantial portion of leaves. Symptoms were observed in ~30% of the pennycress lines adversely affecting overall growth and reproduction. Symptomatic leaves were surface sterilized for 30 seconds in 0.75% sodium hypochlorite, rinsed in sterile deionized water, and bacteria were isolated using three-phase streaking of symptomatic tissue onto KB medium (King et al., 1954). Single colonies of three isolates (creamy white to yellow) from this initial isolation were streaked onto KB medium to obtain pure cultures. Individual colonies were transferred for growth overnight in nutrient broth (Difco) and an equal amount of the broth was added to 30% glycerol in deionized (di) water and stored at -80 °C. To validate Koch's Postulates, bacteria were grown from these stocks on Yeast Dextrose Calcium Carbonate medium (Wilson et al., 1967) and were used to inoculate 5-week-old pennycress plants in the greenhouse. The bacteria were grown for 48 hours at 26°C, suspended in 300 ml of 0.05 M PBS buffer (pH=7.2) for inoculum preparation. Plants were inoculated with three bacterial isolates (approx. 108 CFU/ml) by piercing the mid veins or hydathodes with a sterilized toothpick dipped in the suspension. Inoculated plants were then enclosed in clear plastic bags for 24-48 hours and maintained in the greenhouse at a constant temperature of 26°C with a 16-hour photoperiod. After seven days, water-soaked lesions appeared on the inoculated leaves, eventually developing into the characteristic black spots (Fig. S1-B). DNA from the original isolates was extracted, and 16S PCR and sequencing of the positive bands was done. The negative control only produced brown spots at the site of inoculation (Fig. S1-C). The primer sequences were as follows: 27F: AGAGTTTGATCMTGGCTCAG; 1492R: GGTTACCTTGTTACGACTT (Eden et al., 1991; Weisburg et al., 1991). A BLAST analysis showed that the isolates had an E value of 0.0 to the genus Xanthomonas as well as 100% identity. Amplification and sequencing of the bacterium using gyrB amplicons revealed a 99-100% pairwise match with Xc. To enhance taxonomy resolution and confirm the identity of these isolates, the complete genomes of three samples were sequenced using NextSeq2000 Illumina platform (NCBI bioproject ID PRJNA1040293). Average Nucleotide Identity (ANI) analysis was conducted with representative strains from the Xc species (Dubrow et al., 2022), using PanExplorer (Dereeper et al., 2020) featuring integrated FastANI module (Jain et al., 2018). The isolates genomes exhibited over 98% identity and clustered with that of Xc pv. incanae and Xc pv. barbarae (Fig S2). Further work will be required to identify the pathovar of Xc identified in this study through phenotypic host range assay. This marks the first documented case of Xc in pennycress in the Midwestern US. Given the potential use of pennycress as a cover crop in the region, further investigations are warranted to assess its economic impact on production and develop management strategies.

20.
Nutrients ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337646

RESUMEN

The human gut microbiome is a highly dynamic community of bacteria, fungi, viruses, archaea, and protozoans that resides within the gastrointestinal tract [...].


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Bacterias , Archaea , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA