Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34927583

RESUMEN

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Asunto(s)
Células Artificiales , Bioingeniería/métodos , Bioingeniería/estadística & datos numéricos , Bioingeniería/tendencias , Colaboración Intersectorial , Orgánulos/fisiología , Biología Sintética/tendencias , Predicción , Humanos
2.
J Immunol ; 198(3): 1034-1046, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039304

RESUMEN

Ag-mediated crosslinking of IgE-FcεRI complexes activates mast cells and basophils, initiating the allergic response. Of 34 donors recruited having self-reported shrimp allergy, only 35% had significant levels of shrimp-specific IgE in serum and measurable basophil secretory responses to rPen a 1 (shrimp tropomyosin). We report that degranulation is linked to the number of FcεRI occupied with allergen-specific IgE, as well as the dose and valency of Pen a 1. Using clustered regularly interspaced palindromic repeat-based gene editing, human RBLrαKO cells were created that exclusively express the human FcεRIα subunit. Pen a 1-specific IgE was affinity purified from shrimp-positive plasma. Cells primed with a range of Pen a 1-specific IgE and challenged with Pen a 1 showed a bell-shaped dose response for secretion, with optimal Pen a 1 doses of 0.1-10 ng/ml. Mathematical modeling provided estimates of receptor aggregation kinetics based on FcεRI occupancy with IgE and allergen dose. Maximal degranulation was elicited when ∼2700 IgE-FcεRI complexes were occupied with specific IgE and challenged with Pen a 1 (IgE epitope valency of ≥8), although measurable responses were achieved when only a few hundred FcεRI were occupied. Prolonged periods of pepsin-mediated Pen a 1 proteolysis, which simulates gastric digestion, were required to diminish secretory responses. Recombinant fragments (60-79 aa), which together span the entire length of tropomyosin, were weak secretagogues. These fragments have reduced dimerization capacity, compete with intact Pen a 1 for binding to IgE-FcεRI complexes, and represent a starting point for the design of promising hypoallergens for immunotherapy.


Asunto(s)
Alérgenos/inmunología , Receptores de IgE/metabolismo , Basófilos/fisiología , Degranulación de la Célula , Relación Dosis-Respuesta Inmunológica , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/metabolismo
3.
BMC Syst Biol ; 10 Suppl 2: 48, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27490268

RESUMEN

BACKGROUND: Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. RESULTS: We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. CONCLUSIONS: We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Conformación Molecular , Método de Montecarlo , Probabilidad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...