Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710898

RESUMEN

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Asunto(s)
Antifúngicos , Aspergillus niger , Candida albicans , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Imidazoles , Nanofibras , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antifúngicos/química , Nanofibras/química , Candida albicans/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacología , Preparaciones de Acción Retardada , Pruebas de Sensibilidad Microbiana/métodos , Portadores de Fármacos/química , Estabilidad de Medicamentos
2.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33872827

RESUMEN

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Distribución Tisular
3.
Crit Rev Ther Drug Carrier Syst ; 37(2): 135-159, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32865903

RESUMEN

Nail psoriasis is a chronic condition which causes pain and functional impairment; thus, it restricts the activities of daily living and worsens the quality of life. Different chemotherapeutic options are available for treating nail psoriasis such as systemic, intralesional, and topical therapies. However, current chemotherapy suffers from several limitations and to overcome them, new advancements are being made worldwide. Various reports have been published on current progress in the treatment of nail psoriasis such as clinical efficacy studies of novel antipsoriatic agents and novel formulation strategies for current chemotherapy. There are several novel nail formulations for the treatment of nail disorders, particularly onychomycosis, such as vesicular colloidal structure (liposomes, niosomes, transfersomes, ethosomes, etc.) and nonvesicular colloidal structures (nano-emulgel, nanocapsules, thermosensitive gel, etc.) These formulations can also prove beneficial for the treatment of nail psoriasis, and will be heavily explored in the near future. This review provides a brief introduction to the disease, its pathogenesis, and its treatment modalities. The review also throws light onto progress and future perspectives in nail psoriasis treatment.


Asunto(s)
Antiinflamatorios/administración & dosificación , Dolor Crónico/tratamiento farmacológico , Inmunosupresores/administración & dosificación , Enfermedades de la Uña/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Administración Tópica , Dolor Crónico/inmunología , Dolor Crónico/psicología , Ensayos Clínicos como Asunto , Coloides , Portadores de Fármacos , Geles , Glucocorticoides/administración & dosificación , Humanos , Inyecciones Intralesiones , Inyecciones Subcutáneas , Enfermedades de la Uña/complicaciones , Enfermedades de la Uña/inmunología , Enfermedades de la Uña/psicología , Uñas/efectos de los fármacos , Uñas/inmunología , Uñas/patología , Nanopartículas , Psoriasis/complicaciones , Psoriasis/inmunología , Psoriasis/psicología , Calidad de Vida , Resultado del Tratamiento
4.
Drug Discov Today ; 23(9): 1610-1621, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29857164

RESUMEN

The new generation of nanoparticles (NPs) encompass attributes of lipids and polymers and are referred to as 'lipid-polymer hybrid nanoparticles' (LPHNPs). LPHNPs have helped shed light on the mechanisms involved in targeted and non-specific drug delivery. Research has also highlighted the opportunities and challenges faced by the use of nanomedicine as personalized therapies in oncology. Here, we review the development of LPHNPs as cancer therapeutics, focusing on the methods deployed for enhancing the targeting efficiency and applications of LPHNPs.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos , Lípidos/química , Oncología Médica/tendencias , Nanomedicina/tendencias , Nanopartículas , Neoplasias/tratamiento farmacológico , Polímeros/química , Tecnología Farmacéutica/tendencias , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Difusión de Innovaciones , Composición de Medicamentos , Predicción , Humanos , Neoplasias/metabolismo , Neoplasias/patología
5.
Vaccine ; 33(36): 4630-8, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26141014

RESUMEN

Transdermal immunization results in poor immunogenicity, which can be attributed to poor permeability of antigens through the skin. Therefore, elastic liposome, ultradeformable lipid vesicles, may overcome the challenges faced during transdermal immunization. This versatile carrier proves better vehicle for transcutaneous delivery of protein, peptide and nucleic acid antigens. The present results are suggestive of improved immunogenicity of carboxyl-terminal 19 kDa fragment of merozoite surface protein-1 (PfMSP-119) of Plasmodium falciparum when administered subcutaneously through elastic liposomes. The prepared elastic liposomes were characterized with respect to vesicles shape and surface morphology, size and size distribution, entrapment efficiency, elasticity, stability and in vitro release. Humoral and cell-mediated immune (CMI) response elicited by topically applied PfMSP-119-loaded elastic liposomes, intramuscularly administered alum-adsorbed PfMSP-119 solution, and topically applied PfMSP-119-loaded conventional liposomes were compared and normalized with vehicle control. Results suggest greater transcutaneous immunization via elastic liposomes, and induced robust and perdurable IgG-specific antibody and cytophilic isotype responses. We report to have achieved sizeable CMI activating factor (IFNγ), a crucial player in conferring resistance to asexual blood stage malaria, responses with elastic liposomes when compared with other formulations. The fluorescence microscopy and histopathology results are suggestive of prominent skin permeation and biodistribution, and demonstrate efficient delivery of malaria antigen via elastic liposomes to immunocompetent Langerhans cells (LC) and lymphatics. In conclusion, elastic liposomal formulation provided greater entrapment efficiency, enhanced penetration and heightened and long-lasting immune response. Moreover, effective immunoadjuvant property of this carrier justifies its potential for improved vaccine delivery, and opens new avenues to explore further on the development of malaria vaccine.


Asunto(s)
Antígenos de Protozoos/inmunología , Portadores de Fármacos/administración & dosificación , Liposomas/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Proteína 1 de Superficie de Merozoito/inmunología , Plasmodium falciparum/inmunología , Administración Cutánea , Animales , Anticuerpos Antiprotozoarios/sangre , Portadores de Fármacos/farmacocinética , Femenino , Humanos , Inyecciones Intramusculares , Liposomas/farmacocinética , Vacunas contra la Malaria/farmacocinética , Ratones Endogámicos BALB C , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/farmacocinética
6.
Drug Deliv Transl Res ; 3(5): 479-97, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25788355

RESUMEN

Nanotechnology is considered to be significant innovative revolution that have found wide spectrum of applications in the fields ranging from medicine, diagnostics, electronics, and communications. Currently used pharmaceutical nanocarriers, such as dendrimers, micelles, nanoparticles, polymeric nanoparticles, microspheres, and many of the nanocarriers particularly in the area of drug delivery, offer a wide variety of useful properties, such as longevity in the blood allowing for their accumulation in pathological areas particularly those with compromised vasculature; specific targeting to certain disease sites; enhanced intracellular penetration of nanomaterial with contrast properties allowing for the direct visualization of carrier in vivo, and stimuli sensitivity allowing for triggered drug release from the carriers under certain physiological conditions. Some of the pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. Moreover, the engineering of multifunctional nanocarriers with several useful properties can significantly enhance the efficacy of many therapeutic and diagnostic protocols. These novel materials operate at the nanoscale range and provide new and powerful cutting edge tools for imaging, diagnosis, and therapy. This review considers current standing and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration, and contrast loading.

7.
AAPS PharmSciTech ; 10(4): 1186-92, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19856107

RESUMEN

The aim of the present report was to develop nonionic surfactant vesicles (niosomes) to improve poor and variable oral bioavailability of griseofulvin. Niosomes were prepared by using different nonionic surfactants span 20, span 40, and span 60. The lipid mixture consisted of surfactant, cholesterol, and dicetyl phosphate in the molar ratio of 125:25:1.5, 100:50:1.5, and 75:75:1.5, respectively. The niosomal formulations were prepared by thin film method and ether injection method. The influence of different formulation variables such as surfactant type, surfactant concentration, and cholesterol concentration was optimized for size distribution and entrapment efficiency for both methods. Result indicated that the niosomes prepared by thin film method with span 60 provided higher entrapment efficiency. The niosomal formulation exhibited significantly retarded in vitro release as compared with free drug. The in vivo study revealed that the niosomal dispersion significantly improved the oral bioavailability of griseofulvin in albino rats after a single oral dose. The maximum concentration (Cmax) achieved in case of niosomal formulation was approximately double (2.98 microg/ml) as compared to free drug (1.54 microg/ml). Plasma drug profile also suggested that the developed niosomal system also has the potential of maintaining therapeutic level of griseofulvin for a longer period of time as compared to free griseofulvin. The niosomal formulation showed significant increase in area under the curve0-24 (AUC; 41.56 microg/ml h) as compared to free griseofulvin (22.36 microg/ml h) reflecting sustained release characteristics. In conclusion, the niosomal formulation could be one of the promising delivery system for griseofulvin with improved oral bioavailability and prolonged drug release profiles.


Asunto(s)
Antifúngicos/administración & dosificación , Griseofulvina/administración & dosificación , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Estabilidad de Medicamentos , Griseofulvina/química , Griseofulvina/farmacocinética , Liposomas/administración & dosificación , Masculino , Ratas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA