Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 15: 1362658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984275

RESUMEN

The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance. It must turn ill-defined problems into well-defined ones, turn semantics into syntax. This ability to realize relevance is present in all organisms, from bacteria to humans. It lies at the root of organismic agency, cognition, and consciousness, arising from the particular autopoietic, anticipatory, and adaptive organization of living beings. In this article, we show that the process of relevance realization is beyond formalization. It cannot be captured completely by algorithmic approaches. This implies that organismic agency (and hence cognition as well as consciousness) are at heart not computational in nature. Instead, we show how the process of relevance is realized by an adaptive and emergent triadic dialectic (a trialectic), which manifests as a metabolic and ecological-evolutionary co-constructive dynamic. This results in a meliorative process that enables an agent to continuously keep a grip on its arena, its reality. To be alive means to make sense of one's world. This kind of embodied ecological rationality is a fundamental aspect of life, and a key characteristic that sets it apart from non-living matter.

2.
J Mol Evol ; 92(2): 87-92, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453740

RESUMEN

A recent publication in Nature has generated much heated discussion about evolution, its tendency towards increasing diversity and complexity, and its potential status above and beyond the known laws of fundamental physics. The argument at the heart of this controversy concerns assembly theory, a method to detect and quantify the influence of higher-level emergent causal constraints in computational worlds made of basic objects and their combinations. In this short essay, I briefly review the theory, its basic principles and potential applications. I then go on to critically examine its authors' assertions, concluding that assembly theory has merit but is not nearly as novel or revolutionary as claimed. It certainly does not provide any new explanation of biological evolution or natural selection, or a new grounding of biology in physics. In this regard, the presentation of the paper is starkly distorted by hype, which may explain some of the outrage it created.


Asunto(s)
Evolución Biológica
3.
R Soc Open Sci ; 10(11): 231100, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38026019

RESUMEN

More than ever, humanity relies on robust scientific knowledge of the world and our place within it. Unfortunately, our contemporary view of science is still suffused with outdated ideas about scientific knowledge production based on a naive kind of realism. These ideas persist among members of the public and scientists alike. They contribute to an ultra-competitive system of academic research, which sacrifices long-term productivity through an excessive obsession with short-term efficiency. Efforts to diversify this system come from a movement called democratic citizen science, which can serve as a model for scientific inquiry in general. Democratic citizen science requires an alternative theory of knowledge with a focus on the role that diversity plays in the process of discovery. Here, we present such an epistemology, based on three central philosophical pillars: perspectival realism, a naturalistic process-based epistemology, and deliberative social practices. They broaden our focus from immediate research outcomes towards cognitive and social processes which facilitate sustainable long-term productivity and scientific innovation. This marks a shift from an industrial to an ecological vision of how scientific research should be done, and how it should be assessed. At the core of this vision are research communities that are diverse, representative, and democratic.

4.
EMBO Rep ; 23(8): e55642, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35815565
5.
PLoS Biol ; 20(6): e3001715, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767561

RESUMEN

The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability.


Asunto(s)
Eucariontes , ARN Bicatenario , Elementos Transponibles de ADN/genética , Eucariontes/genética , Flujo Genético , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética
6.
BMJ Open ; 12(5): e052130, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613821

RESUMEN

OBJECTIVES: Austria, and particularly its westernmost federal state Vorarlberg, developed an extremely high incidence rate during the COVID-19 pandemic. Healthcare workers (HCWs) worldwide are known to have an increased risk of contracting the disease within the working environment and, therefore, the seroprevalence in this population is of particular interest. We thus aimed to analyse SARS-CoV-2-specific antibody dynamics in Vorarlberg HCWs. DESIGN: Prospective cohort study of HCWs including testing at three different time points for the prevalence of anti-SARS-CoV-2 IgG antibodies specific for nucleocapsid protein (NP) and receptor-binding domain (RBD). SETTING: All five state hospitals of Vorarlberg. PARTICIPANTS: A total of 395 HCWs, enrolled in June 2020 (time point 1 (t1)), 2 months after the end of the first wave, retested between October and November at the beginning of the second wave (time point 2 (t2)) and again at the downturn of the second wave in January 2021 (time point 3 (t3)). MAIN OUTCOMES: We assessed weak and strong seropositivity and associated factors, including demographic and clinical characteristics, symptoms consistent with COVID-19 infection, infections verified by reverse transcription PCR (RT-PCR) and vaccinations. RESULTS: At t1, 3% of HCWs showed strong IgG-specific responses to either NP or RBD. At t2, the rate had increased to 4%, and at t3 to 14%. A strong response was found to be stable for up to 10 months. Overall, only 55% of seropositive specimen had antibodies against both antigens RBD and NP; 29% had only RBD-specific and 16% only NP-specific antibodies. Compared with the number of infections found by RT-PCR, the number of HCWs being seropositive was 38% higher. CONCLUSION AND RELEVANCE: Serological testing based on only one antigen implicates the risk of missing infections; thus, the set of antigens should be broadened in the future. The seroprevalence among participating HCWs was comparable to the general population in Austria. Nevertheless, in view of undetected infections, monitoring and surveillance should be reconsidered.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Formación de Anticuerpos , Austria/epidemiología , COVID-19/epidemiología , Personal de Salud , Humanos , Inmunoglobulina G , Proteínas de la Nucleocápside , Pandemias , Estudios Prospectivos , Estudios Seroepidemiológicos
7.
Interface Focus ; 11(3): 20210007, 2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34055306

RESUMEN

Comparative biology builds up systematic knowledge of the diversity of life, across evolutionary lineages and levels of organization, starting with evidence from a sparse sample of model organisms. In developmental biology, a key obstacle to the growth of comparative approaches is that the concept of homology is not very well defined for levels of organization that are intermediate between individual genes and morphological characters. In this paper, we investigate what it means for ontogenetic processes to be homologous, focusing specifically on the examples of insect segmentation and vertebrate somitogenesis. These processes can be homologous without homology of the underlying genes or gene networks, since the latter can diverge over evolutionary time, while the dynamics of the process remain the same. Ontogenetic processes like these therefore constitute a dissociable level and distinctive unit of comparison requiring their own specific criteria of homology. In addition, such processes are typically complex and nonlinear, such that their rigorous description and comparison requires not only observation and experimentation, but also dynamical modelling. We propose six criteria of process homology, combining recognized indicators (sameness of parts, morphological outcome and topological position) with novel ones derived from dynamical systems modelling (sameness of dynamical properties, dynamical complexity and evidence for transitional forms). We show how these criteria apply to animal segmentation and other ontogenetic processes. We conclude by situating our proposed dynamical framework for homology of process in relation to similar research programmes, such as process structuralism and developmental approaches to morphological homology.

8.
Interface Focus ; 11(3): 20210011, 2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34055307

RESUMEN

Modularity is an essential feature of any adaptive complex system. Phenotypic traits are modules in the sense that they have a distinguishable structure or function, which can vary (quasi-)independently from its context. Since all phenotypic traits are the product of some underlying regulatory dynamics, the generative processes that constitute the genotype-phenotype map must also be functionally modular. Traditionally, modular processes have been identified as structural modules in regulatory networks. However, structure only constrains, but does not determine, the dynamics of a process. Here, we propose an alternative approach that decomposes the behaviour of a complex regulatory system into elementary activity-functions. Modular activities can occur in networks that show no structural modularity, making dynamical modularity more widely applicable than structural decomposition. Furthermore, the behaviour of a regulatory system closely mirrors its functional contribution to the outcome of a process, which makes dynamical modularity particularly suited for functional decomposition. We illustrate our approach with numerous examples from the study of metabolism, cellular processes, as well as development and pattern formation. We argue that dynamical modules provide a shared conceptual foundation for developmental and evolutionary biology, and serve as the foundation for a new account of process homology, which is presented in a separate contribution by DiFrisco and Jaeger to this focus issue.

9.
Bioessays ; 42(6): e1900226, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32449193

RESUMEN

The logic of genetic discovery has changed little over time, but the focus of biology is shifting from simple genotype-phenotype relationships to complex metabolic, physiological, developmental, and behavioral traits. In light of this, the traditional reductionist view of individual genes as privileged difference-making causes of phenotypes is re-examined. The scope and nature of genetic effects in complex regulatory systems, in which dynamics are driven by regulatory feedback and hierarchical interactions across levels of organization are considered. This review argues that it is appropriate to treat genes as specific actual difference-makers for the molecular regulation of gene expression. However, they are often neither stable, proportional, nor specific as causes of the overall dynamic behavior of regulatory networks. Dynamical models, properly formulated and validated, provide the tools to probe cause-and-effect relationships in complex biological systems, allowing to go beyond the limitations of genetic reductionism to gain an integrative understanding of the causal processes underlying complex phenotypes.


Asunto(s)
Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Fenotipo
10.
Curr Top Dev Biol ; 137: 219-246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32143744

RESUMEN

There is much talk about information in biology. In developmental biology, this takes the form of "positional information," especially in the context of morphogen-based pattern formation. Unfortunately, the concept of "information" is rarely defined in any precise manner. Here, we provide two alternative interpretations of "positional information," and examine the complementary meanings and uses of each concept. Positional information defined as Shannon information helps us understand decoding and error propagation in patterning systems. General relativistic positional information, in contrast, provides a metric to assess the output of pattern-forming mechanisms. Both interpretations provide powerful conceptual tools that do not compete, but are best used in combination to gain a proper mechanistic understanding of robust patterning.


Asunto(s)
Tipificación del Cuerpo , Comunicación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Transducción de Señal
11.
Elife ; 82019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31169494

RESUMEN

The existence of discrete phenotypic traits suggests that the complex regulatory processes which produce them are functionally modular. These processes are usually represented by networks. Only modular networks can be partitioned into intelligible subcircuits able to evolve relatively independently. Traditionally, functional modularity is approximated by detection of modularity in network structure. However, the correlation between structure and function is loose. Many regulatory networks exhibit modular behaviour without structural modularity. Here we partition an experimentally tractable regulatory network-the gap gene system of dipteran insects-using an alternative approach. We show that this system, although not structurally modular, is composed of dynamical modules driving different aspects of whole-network behaviour. All these subcircuits share the same regulatory structure, but differ in components and sensitivity to regulatory interactions. Some subcircuits are in a state of criticality, while others are not, which explains the observed differential evolvability of the various expression features in the system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genes del Desarrollo , Insectos/genética , Animales
12.
R Soc Open Sci ; 5(8): 180458, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225035

RESUMEN

Gap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A-P) axis of the blastoderm embryo. While gap domains cover the entire length of the A-P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata, which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less (tal) in C. albipunctata. The homologue of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Ca-tll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata.

13.
Elife ; 72018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29537962

RESUMEN

Evolution of morphogenesis is generally associated with changes in genetic regulation. Here, we report evidence indicating that dorsal closure, a conserved morphogenetic process in dipterans, evolved as the consequence of rearrangements in epithelial organization rather than signaling regulation. In Drosophila melanogaster, dorsal closure consists of a two-tissue system where the contraction of extraembryonic amnioserosa and a JNK/Dpp-dependent epidermal actomyosin cable result in microtubule-dependent seaming of the epidermis. We find that dorsal closure in Megaselia abdita, a three-tissue system comprising serosa, amnion and epidermis, differs in morphogenetic rearrangements despite conservation of JNK/Dpp signaling. In addition to an actomyosin cable, M. abdita dorsal closure is driven by the rupture and contraction of the serosa and the consecutive microtubule-dependent seaming of amnion and epidermis. Our study indicates that the evolutionary transition to a reduced system of dorsal closure involves simplification of the seaming process without changing the signaling pathways of closure progression.


Asunto(s)
Tipificación del Cuerpo/genética , Dípteros/genética , Proteínas de Drosophila/genética , Microtúbulos/genética , Amnios/crecimiento & desarrollo , Animales , Dípteros/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Desarrollo Embrionario/genética , Células Epidérmicas/metabolismo , Epidermis/crecimiento & desarrollo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Recién Nacido , MAP Quinasa Quinasa 4/genética , Transducción de Señal/genética
14.
PLoS Biol ; 16(2): e2003174, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29451884

RESUMEN

Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.


Asunto(s)
Relojes Biológicos/genética , Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Redes Reguladoras de Genes , Especificidad de la Especie , Factores de Tiempo , Tribolium/genética
15.
Evodevo ; 8: 20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29158889

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMPs) are of central importance for dorsal-ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. RESULTS: In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae). We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. CONCLUSIONS: A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of the DV patterning system in insects exhibit extensive amounts of developmental systems drift constrained by highly conserved downstream signalling output.

16.
PLoS Comput Biol ; 13(2): e1005285, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28158178

RESUMEN

Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Simulación por Computador , Drosophila/embriología , Desarrollo Embrionario/fisiología , Femenino
17.
Mol Biol Evol ; 33(5): 1293-307, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26796549

RESUMEN

Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as "system drift." System drift is illustrated by the gap gene network-involved in segmental patterning-in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of "genotype networks" and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila melanogaster/genética , Animales , Evolución Biológica , Biología Evolutiva , Proteínas de Drosophila/genética , Evolución Molecular , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Genes Reguladores , Modelos Genéticos , Filogenia
18.
Dev Biol ; 411(2): 325-338, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26806702

RESUMEN

Understanding eukaryotic transcriptional regulation and its role in development and pattern formation is one of the big challenges in biology today. Most attempts at tackling this problem either focus on the molecular details of transcription factor binding, or aim at genome-wide prediction of expression patterns from sequence through bioinformatics and mathematical modelling. Here we bridge the gap between these two complementary approaches by providing an integrative model of cis-regulatory elements governing the expression of the gap gene giant (gt) in the blastoderm embryo of Drosophila melanogaster. We use a reverse-engineering method, where mathematical models are fit to quantitative spatio-temporal reporter gene expression data to infer the regulatory mechanisms underlying gt expression in its anterior and posterior domains. These models are validated through prediction of gene expression in mutant backgrounds. A detailed analysis of our data and models reveals that gt is regulated by domain-specific CREs at early stages, while a late element drives expression in both the anterior and the posterior domains. Initial gt expression depends exclusively on inputs from maternal factors. Later, gap gene cross-repression and gt auto-activation become increasingly important. We show that auto-regulation creates a positive feedback, which mediates the transition from early to late stages of regulation. We confirm the existence and role of gt auto-activation through targeted mutagenesis of Gt transcription factor binding sites. In summary, our analysis provides a comprehensive picture of spatio-temporal gene regulation by different interacting enhancer elements for an important developmental regulator.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Animales , Perfilación de la Expresión Génica , Genes Reporteros , Ingeniería Genética , Proteínas de Homeodominio/fisiología , Hibridación Fluorescente in Situ , Modelos Teóricos , Mutagénesis , Secuencias Reguladoras de Ácidos Nucleicos
20.
Sci Data ; 2: 150005, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977812

RESUMEN

Gap genes are involved in segment determination during early development in dipteran insects (flies, midges, and mosquitoes). We carried out a systematic quantitative comparative analysis of the gap gene network across different dipteran species. Our work provides mechanistic insights into the evolution of this pattern-forming network. As a central component of our project, we created a high-resolution quantitative spatio-temporal data set of gap and maternal co-ordinate gene expression in the blastoderm embryo of the non-drosophilid scuttle fly, Megaselia abdita. Our data include expression patterns in both wild-type and RNAi-treated embryos. The data-covering 10 genes, 10 time points, and over 1,000 individual embryos-consist of original embryo images, quantified expression profiles, extracted positions of expression boundaries, and integrated expression patterns, plus metadata and intermediate processing steps. These data provide a valuable resource for researchers interested in the comparative study of gene regulatory networks and pattern formation, an essential step towards a more quantitative and mechanistic understanding of developmental evolution.


Asunto(s)
Blastodermo , Dípteros , Genes de Insecto , Animales , Blastodermo/embriología , Blastodermo/metabolismo , Dípteros/embriología , Dípteros/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA