Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Antiviral Res ; 222: 105789, 2024 02.
Article En | MEDLINE | ID: mdl-38158129

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a major threat to global health. Although the World Health Organization ended the public health emergency status, antiviral drugs are needed to address new variants of SARS-CoV-2 and future pandemics. To identify novel broad-spectrum coronavirus drugs, we developed a high-content imaging platform compatible with high-throughput screening. The platform is broadly applicable as it can be adapted to include various cell types, viruses, antibodies, and dyes. We demonstrated that the antiviral activity of compounds against SARS-CoV-2 variants (Omicron BA.5 and Omicron XBB.1.5), SARS-CoV, and human coronavirus 229E could easily be assessed. The inclusion of cellular dyes and immunostaining in combination with in-depth image analysis enabled us to identify compounds that induced undesirable phenotypes in host cells, such as changes in cell morphology or in lysosomal activity. With the platform, we screened ∼900K compounds and triaged hits, thereby identifying potential candidate compounds carrying broad-spectrum activity with limited off-target effects. The flexibility and early-stage identification of compounds with limited host cell effects provided by this high-content imaging platform can facilitate coronavirus drug discovery. We anticipate that its rapid deployability and fast turnaround can also be applied to combat future pandemics.


Coronavirus Infections , Coronavirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , High-Throughput Screening Assays/methods , Coloring Agents/pharmacology , Coloring Agents/therapeutic use , Pandemics
2.
Chem Res Toxicol ; 36(7): 1028-1036, 2023 07 17.
Article En | MEDLINE | ID: mdl-37327474

The search for chemical hit material is a lengthy and increasingly expensive drug discovery process. To improve it, ligand-based quantitative structure-activity relationship models have been broadly applied to optimize primary and secondary compound properties. Although these models can be deployed as early as the stage of molecule design, they have a limited applicability domain─if the structures of interest differ substantially from the chemical space on which the model was trained, a reliable prediction will not be possible. Image-informed ligand-based models partly solve this shortcoming by focusing on the phenotype of a cell caused by small molecules, rather than on their structure. While this enables chemical diversity expansion, it limits the application to compounds physically available and imaged. Here, we employ an active learning approach to capitalize on both of these methods' strengths and boost the model performance of a mitochondrial toxicity assay (Glu/Gal). Specifically, we used a phenotypic Cell Painting screen to build a chemistry-independent model and adopted the results as the main factor in selecting compounds for experimental testing. With the additional Glu/Gal annotation for selected compounds we were able to dramatically improve the chemistry-informed ligand-based model with respect to the increased recognition of compounds from a 10% broader chemical space.


Deep Learning , Quantitative Structure-Activity Relationship , Ligands , Drug Discovery/methods
3.
Nat Chem Biol ; 19(7): 825-836, 2023 07.
Article En | MEDLINE | ID: mdl-36864190

Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO-RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks.


DNA-Binding Proteins , Transcriptome , Male , Humans , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA
4.
Microorganisms ; 11(3)2023 Mar 10.
Article En | MEDLINE | ID: mdl-36985290

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication.

5.
J Virol Methods ; 293: 114150, 2021 07.
Article En | MEDLINE | ID: mdl-33839187

Hepatitis B Virus (HBV) core protein has multiple functions in the viral life cycle and is an attractive target for new anti-viral therapies. Capsid assembly modulators (CAMs) target the core protein and induce the formation of either morphologically normal (CAM-N) or aberrant structures (CAM-A), both devoid of genomic material. To date a diverse family of CAM-N chemotypes has been identified, but in contrast, described CAM-As are based on the heteroaryldihydropyrimidine (HAP) scaffold. We used the HBV-inducible HepG2.117 cell line with immunofluorescent labeling of HBV core to develop and validate a cellular high-content image-based assay where aggregated core structures are identified using image analysis spot texture features. Treatment with HAPs led to a dose- and time-dependent formation of aggregated core appearing as dot-like structures in the cytoplasm and nucleus. By combining a biochemical and cellular screening approach, a compound was identified as a novel non-HAP scaffold able to induce dose-dependent formation of aberrant core structures, which was confirmed by electron microscopy and native gel electrophoresis. This compound displayed anti-HBV activity in HepG2.117 cells, providing proof-of-concept for our screening approach. We believe our combined biochemical and cellular high-content screening method will aid in expanding the range of CAM-A chemotypes.


Capsid , Hepatitis B virus , Pyrimidines , Virus Assembly , Virus Replication
6.
Mol Cancer Ther ; 20(5): 763-774, 2021 05.
Article En | MEDLINE | ID: mdl-33649102

Numerous mechanisms of resistance arise in response to treatment with second-generation androgen receptor (AR) pathway inhibitors in metastatic castration-resistant prostate cancer (mCRPC). Among these, point mutations in the ligand binding domain can transform antagonists into agonists, driving the disease through activation of AR signaling. To address this unmet need, we report the discovery of JNJ-63576253, a next-generation AR pathway inhibitor that potently abrogates AR signaling in models of human prostate adenocarcinoma. JNJ-63576253 is advancing as a clinical candidate with potential effectiveness in the subset of patients who do not respond to or are progressing while on second-generation AR-targeted therapeutics.


Androgen Receptor Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Domains/genetics , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor , Humans , Ligands , Male , Mice , Models, Molecular , Mutation , Rats , Xenograft Model Antitumor Assays
7.
Sci Rep ; 10(1): 13262, 2020 08 06.
Article En | MEDLINE | ID: mdl-32764586

Phenomic profiles are high-dimensional sets of readouts that can comprehensively capture the biological impact of chemical and genetic perturbations in cellular assay systems. Phenomic profiling of compound libraries can be used for compound target identification or mechanism of action (MoA) prediction and other applications in drug discovery. To devise an economical set of phenomic profiling assays, we assembled a library of 1,008 approved drugs and well-characterized tool compounds manually annotated to 218 unique MoAs, and we profiled each compound at four concentrations in live-cell, high-content imaging screens against a panel of 15 reporter cell lines, which expressed a diverse set of fluorescent organelle and pathway markers in three distinct cell lineages. For 41 of 83 testable MoAs, phenomic profiles accurately ranked the reference compounds (AUC-ROC ≥ 0.9). MoAs could be better resolved by screening compounds at multiple concentrations than by including replicates at a single concentration. Screening additional cell lineages and fluorescent markers increased the number of distinguishable MoAs but this effect quickly plateaued. There remains a substantial number of MoAs that were hard to distinguish from others under the current study's conditions. We discuss ways to close this gap, which will inform the design of future phenomic profiling efforts.


Biological Products/pharmacology , Luminescent Proteins/genetics , Phenomics/methods , Small Molecule Libraries/pharmacology , A549 Cells , Cell Line , Drug Discovery , Gene Expression Regulation/drug effects , Hep G2 Cells , Humans , Luminescent Proteins/metabolism
9.
Stem Cell Reports ; 11(2): 363-379, 2018 08 14.
Article En | MEDLINE | ID: mdl-30057263

Tauopathies such as frontotemporal dementia (FTD) remain incurable to date, partially due to the lack of translational in vitro disease models. The MAPT gene, encoding the microtubule-associated protein tau, has been shown to play an important role in FTD pathogenesis. Therefore, we used zinc finger nucleases to introduce two MAPT mutations into healthy donor induced pluripotent stem cells (iPSCs). The IVS10+16 mutation increases the expression of 4R tau, while the P301S mutation is pro-aggregant. Whole-transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential, and aberrant WNT/SHH signaling. Notably, these neurodevelopmental phenotypes could be recapitulated in neurons from patients carrying the MAPT IVS10+16 mutation. Moreover, the additional pro-aggregant P301S mutation revealed additional phenotypes, such as an increased calcium burst frequency, reduced lysosomal acidity, tau oligomerization, and neurodegeneration. This series of iPSCs could serve as a platform to unravel a potential link between pathogenic 4R tau and FTD.

10.
Nat Commun ; 8(1): 167, 2017 08 01.
Article En | MEDLINE | ID: mdl-28761099

Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure-activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection.Respiratory syncytial virus causes lung infections in children, immunocompromised adults, and in the elderly. Here the authors show that a chemical inhibitor to a viral fusion protein is effective in reducing viral titre and ameliorating infection in rodents and neonatal lambs.


Imidazolidines/metabolism , Indoles/metabolism , Respiratory Syncytial Virus, Human/metabolism , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Proteins/metabolism , Animals , Animals, Newborn , Cell Line, Tumor , Chlorocebus aethiops , Epithelial Cells , Humans , Imidazolidines/pharmacology , Imidazolidines/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Molecular Structure , Pneumonia, Viral/drug therapy , Rats , Respiratory Mucosa/cytology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/metabolism , Sheep , Structure-Activity Relationship , Vero Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/therapeutic use
11.
PLoS One ; 11(6): e0156942, 2016.
Article En | MEDLINE | ID: mdl-27303813

In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation.


Cell Culture Techniques/methods , Imaging, Three-Dimensional/methods , Light , Microscopy, Confocal/methods , Spheroids, Cellular/cytology , Algorithms , Cancer-Associated Fibroblasts/cytology , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Survival , Computer Simulation , Humans , Image Processing, Computer-Assisted/methods , Models, Biological , Reproducibility of Results , Tumor Microenvironment
12.
Nat Chem Biol ; 12(2): 87-93, 2016 Feb.
Article En | MEDLINE | ID: mdl-26641933

Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.


Antiviral Agents/pharmacology , Models, Molecular , Respiratory Syncytial Viruses/drug effects , Viral Fusion Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Assay , Colorimetry , Humans , Real-Time Polymerase Chain Reaction
13.
Chem Res Toxicol ; 28(10): 1914-25, 2015 Oct 19.
Article En | MEDLINE | ID: mdl-26313431

During drug discovery and development, the early identification of adverse effects is expected to reduce costly late-stage failures of candidate drugs. As risk/safety assessment takes place rather late during the development process and due to the limited ability of animal models to predict the human situation, modern unbiased high-dimensional biology readouts are sought, such as molecular signatures predictive for in vivo response using high-throughput cell-based assays. In this theoretical proof of concept, we provide findings of an in-depth exploration of a single chemical core structure. Via transcriptional profiling, we identified a subset of close analogues that commonly downregulate multiple tubulin genes across cellular contexts, suggesting possible spindle poison effects. Confirmation via a qualified toxicity assay (in vitro micronucleus test) and the identification of a characteristic aggregate-formation phenotype via exploratory high-content imaging validated the initial findings. SAR analysis triggered the synthesis of a new set of compounds and allowed us to extend the series showing the genotoxic effect. We demonstrate the potential to flag toxicity issues by utilizing data from exploratory experiments that are typically generated for target evaluation purposes during early drug discovery. We share our thoughts on how this approach may be incorporated into drug development strategies.


Drug Discovery , Gene Expression Profiling , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Microscopy, Confocal , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/toxicity , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/toxicity , Structure-Activity Relationship , Transcriptome/drug effects , Tubulin/metabolism
14.
Proc Natl Acad Sci U S A ; 111(26): E2636-45, 2014 Jul 01.
Article En | MEDLINE | ID: mdl-24979791

Centrosomes are highly dynamic, spherical organelles without a membrane. Their physical nature and their assembly are not understood. Using the concept of phase separation, we propose a theoretical description of centrosomes as liquid droplets. In our model, centrosome material occurs in a form soluble in the cytosol and a form that tends to undergo phase separation from the cytosol. We show that an autocatalytic chemical transition between these forms accounts for the temporal evolution observed in experiments. Interestingly, the nucleation of centrosomes can be controlled by an enzymatic activity of the centrioles, which are present at the core of all centrosomes. This nonequilibrium feature also allows for multiple stable centrosomes, a situation that is unstable in equilibrium phase separation. Our theory explains the growth dynamics of centrosomes for all cell sizes down to the eight-cell stage of the Caenorhabditis elegans embryo, and it also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with perturbed centrioles. We also propose an interpretation of the molecular details of the involved proteins in the case of C. elegans. Our example suggests a general picture of the organization of membraneless organelles.


Centrioles/metabolism , Centrosome/chemistry , Models, Chemical , Catalysis , Diffusion , Kinetics , Thermodynamics
15.
Curr Biol ; 21(15): 1259-67, 2011 Aug 09.
Article En | MEDLINE | ID: mdl-21802300

BACKGROUND: The ways in which cells set the size of intracellular structures is an important but largely unsolved problem [1]. Early embryonic divisions pose special problems in this regard. Many checkpoints common in somatic cells are missing from these divisions, which are characterized by rapid reductions in cell size and short cell cycles [2]. Embryonic cells must therefore possess simple and robust mechanisms that allow the size of many of their intracellular structures to rapidly scale with cell size. RESULTS: Here, we study the mechanism by which one structure, the centrosome, scales in size during the early embryonic divisions of C. elegans. We show that centrosome size is directly related to cell size and is independent of lineage. Two findings suggest that the total amount of maternally supplied centrosome proteins could limit centrosome size. First, the combined volume of all centrosomes formed at any one time in the developing embryo is constant. Second, the total volume of centrosomes in any one cell is independent of centrosome number. By increasing the amount of centrosome proteins in the cell, we provide evidence that one component that limits centrosome size is the conserved pericentriolar material protein SPD-2 [3], which we show binds to and targets polo-like kinase 1 [3, 4] to centrosomes. CONCLUSIONS: We propose a limiting component hypothesis, in which the volume of the cell sets centrosome size by limiting the total amount of centrosome components. This idea could be a general mechanism for setting the size of intracellular organelles during development.


Caenorhabditis elegans/embryology , Centrosome , Embryo, Nonmammalian/metabolism , Animals , Cell Cycle , Cell Size
16.
Bioinformatics ; 26(12): i13-20, 2010 Jun 15.
Article En | MEDLINE | ID: mdl-20529897

MOTIVATION: The centrosome is a dynamic structure in animal cells that serves as a microtubule organizing center during mitosis and also regulates cell-cycle progression and sets polarity cues. Automated and reliable tracking of centrosomes is essential for genetic screens that study the process of centrosome assembly and maturation in the nematode Caenorhabditis elegans. RESULTS: We have developed a fully automatic system for tracking and measuring fluorescently labeled centrosomes in 3D time-lapse images of early C. elegans embryos. Using a spinning disc microscope, we monitor the centrosome cycle in living embryos from the 1- up to the 16-cell stage at imaging intervals between 30 and 50 s. After establishing the centrosome trajectories with a novel method involving two layers of inference, we also automatically detect the nuclear envelope breakdown in each cell division and recognize the identities of the centrosomes based on the invariant cell lineage of C. elegans. To date, we have tracked centrosomes in over 500 wild type and mutant embryos with almost no manual correction required. AVAILABILITY: The centrosome tracking software along with test data is freely available at http://publications.mpi-cbg.de/itemPublication.html?documentId=4082.


Caenorhabditis elegans/embryology , Centrosome/ultrastructure , Animals , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/metabolism , Cell Division , Cell Lineage , Centrosome/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Microscopy, Fluorescence , Spindle Apparatus/ultrastructure
17.
Curr Biol ; 20(4): 353-8, 2010 Feb 23.
Article En | MEDLINE | ID: mdl-20137951

Just as the size of an organism is carefully controlled, the size of intracellular structures must also be regulated. The mitotic spindle is a supramolecular machine that generates the forces which separate sister chromatids during mitosis. Although spindles show little size variation between cells of the same type, spindle length can vary at least 10-fold between different species. Recent experiments on spindle length showed that in embryonic systems spindle length varied with blastomere size. Furthermore, a comparison between two Xenopus species showed that spindle length was dependent on some cytoplasmic factor. These data point toward mechanisms to scale spindle length with cell size. Centrosomes play an important role in organizing microtubules during spindle assembly. Here we use Caenorhabditis elegans to study the role of centrosomes in setting spindle length. We show that spindle length correlates with centrosome size through development and that a reduction of centrosome size by molecular perturbation reduces spindle length. By systematically analyzing centrosome proteins, we show that spindle length does not depend on microtubule density at centrosomes. Rather, our data suggest that centrosome size sets mitotic spindle length by controlling the length scale of a TPXL-1 gradient along spindle microtubules.


Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Carrier Proteins/metabolism , Centrosome/ultrastructure , Spindle Apparatus/ultrastructure , Animals , Caenorhabditis elegans Proteins/genetics , Cell Size , Centrosome/metabolism , Image Processing, Computer-Assisted , Linear Models , Microscopy, Fluorescence , RNA Interference , Spindle Apparatus/metabolism
...