Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3248, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228609

RESUMEN

Microfluidics is a highly useful platform for culturing, monitoring, and testing biological cells. The integration of electrodes into microfluidic channels extends the functionality, sensing, and testing capabilities of microfluidic systems. By employing an electrochemical impedance spectroscopy (EIS) technique, the non-invasive, label-free detection of the activities of cells in real-time can be achieved. To address the movement toward spatially resolving cells in cell culture, we developed a sensory system capable of electro-addressing cell location within a microfluidic channel. This simple system allows for real-time cell location, integrity monitoring (of barrier producing cells), and confluency sensing without the need for frequent optical evaluation-saving time. EIS results demonstrate that cells within microfluidic channels can be located between various pairs of electrodes at different positions along the length of the device. Impedance spectra clearly differentiates between empty, sparse, and confluent microfluidic channels. The system also senses the level of cell confluence between electrode pairs-allowing for the relative quantification of cells in different areas of the microfluidic channel. The system's electrode layout can easily be incorporated into other devices. Namely, organ-on-a-chip devices, that require the monitoring of precise cell location and confluency levels for understanding tissue function, modeling diseases, and for testing therapeutics.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Espectroscopía Dieléctrica , Impedancia Eléctrica , Electrodos , Dispositivos Laboratorio en un Chip , Órganos de los Sentidos
2.
J Vis Exp ; (157)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32176199

RESUMEN

The blood brain barrier (BBB) is formed by neurovascular units (NVUs) that shield the central nervous system (CNS) from a range of factors found in the blood that can disrupt delicate brain function. As such, the BBB is a major obstacle to the delivery of therapeutics to the CNS. Accumulating evidence suggests that the BBB plays a key role in the onset and progression of neurological diseases. Thus, there is a tremendous need for a BBB model that can predict penetration of CNS-targeted drugs as well as elucidate the BBB's role in health and disease. We have recently combined organ-on-chip and induced pluripotent stem cell (iPSC) technologies to generate a BBB chip fully personalized to humans. This novel platform displays cellular, molecular, and physiological properties that are suitable for the prediction of drug and molecule transport across the human BBB. Furthermore, using patient-specific BBB chips, we have generated models of neurological disease and demonstrated the potential for personalized predictive medicine applications. Provided here is a detailed protocol demonstrating how to generate iPSC-derived BBB chips, beginning with differentiation of iPSC-derived brain microvascular endothelial cells (iBMECs) and resulting in mixed neural cultures containing neural progenitors, differentiated neurons, and astrocytes. Also described is a procedure for seeding cells into the organ chip and culturing of the BBB chips under controlled laminar flow. Lastly, detailed descriptions of BBB chip analyses are provided, including paracellular permeability assays for assessing drug and molecule permeability as well as immunocytochemical methods for determining the composition of cell types within the chip.


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Astrocitos/citología , Transporte Biológico , Diferenciación Celular , Células Endoteliales/citología , Humanos , Dispositivos Laboratorio en un Chip , Modelos Neurológicos , Técnicas de Cultivo de Órganos
3.
Mater Sci Eng C Mater Biol Appl ; 92: 477-488, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184773

RESUMEN

Most cancer patients die as a consequence of distant metastases, which are frequently unresponsive to cancer therapy. This study focuses on the anti-tumorigenic and anti-metastatic properties of tangeretin-zinc oxide quantum dots (Tan-ZnO QDs) against the NCI-H358 cell line. Tan-ZnO QDs are pH-sensitive and capitalize on the acidic pH maintained in the tumor microenvironment; therefore, targeted drug delivery is directed specifically to cancer cells, leaving the normal cells less affected. Tan was loaded into synthesized ZnO QDs, and drug loading was analyzed using Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectrometry. Crystalline phase and particle size were measured using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Drug release was evaluated in buffered solutions with differing pH for up to 15 h. The results confirmed stable drug release (80%) in an acidic pH. Tan-ZnO QDs induced significant cytotoxicity in NCI-H358 metastatic cells, while not markedly affecting HK-2 human normal cells. Morphology of treated H358 cells analyzed via atomic force microscopy (AFM) showed an increased surface roughness and pores. Further, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells increased after treatment with Tan-ZnO QDs. DNA fragmentation was also induced after treatment with increasing concentrations of Tan-ZnO QDs in H358 cells. We also confirmed regulation of apoptosis via expression levels of Bax and Bcl-2 proteins; G2/M phase cell cycle arrest was observed. Additionally, cell proliferation and migration drastically decreased, and cell invasion and migration, hallmarks of metastasis, were significantly inhibited in H358 cells. Matrix metalloproteinase (MMP)2 and MMP9, markers of metastasis, as well as vascular endothelial growth factor (VEGF), a marker of angiogenesis, were significantly downregulated upon treatment with Tan-ZnO QDs. In conclusion, our novel formulation destabilized H358 cells by using its acidic tumor microenvironment, thereby regulating cell apoptosis, proliferation, and metastatic properties.


Asunto(s)
Apoptosis/efectos de los fármacos , Flavonas , Neoplasias Pulmonares/tratamiento farmacológico , Puntos Cuánticos , Óxido de Zinc , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Flavonas/química , Flavonas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico , Óxido de Zinc/química , Óxido de Zinc/farmacología
4.
Mater Sci Eng C Mater Biol Appl ; 81: 551-560, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28888009

RESUMEN

Current trends in therapeutic research are the application of nanomaterial carriers for cancer therapy. One such molecule, ZnO, originally used in diagnosis and as a drug carrier, is gaining importance for its biological properties. Here, we report for the first time, the scope of ZnO QDs for enhanced cytotoxicity against MCF-7 and metastatic MDA-MB-231 human breast cancer cells. Unlike other ZnO nanostructures, ZnO QDs are dispersed and small sized (8-10nm) which is believed to greatly increase the cellular uptake. Furthermore, the acidic tumor microenvironment attracts ZnO QDs enhancing targeted therapy while leaving normal cells less affected. Results from MTT assay demonstrated that ZnO QDs induced cytotoxicity to MCF-7 and metastatic MDA-MB-231 breast cancer cells at very low concentrations (10 and 15µg/ml) as compared to other reported ZnO nanostructures. HEK-293 cells showed less toxicity at these concentrations. Confocal microscope images from DAPI staining and TUNEL assay demonstrated that ZnO QDs induced nuclear fragmentation and apoptosis in MCF-7 and MDA-MB-231. FACS results suggested ZnO QDs treatment induced cell cycle arrest at the G0/G1 phase in these cells. ZnO QDs drastically decreased the proliferation and migration of MCF-7 and MDA-MB-231 as seen from the results of the clonogenic and wound healing assays respectively. Furthermore, our data suggested that ZnO QDs regulated apoptosis via Bax and Bcl-2 proteins as validated by immunofluorescence and western blot. Taken together, our findings demonstrate that these ultra-small sized ZnO QDs destabilize cancer cells by using its acidic tumor microenvironment thereby inducing apoptosis and controlling the cell proliferation and migration at low dosages.


Asunto(s)
Neoplasias de la Mama , Puntos Cuánticos , Antineoplásicos , Apoptosis , Línea Celular Tumoral , Humanos , Óxido de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...