Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 114(8): 1970-1979, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694873

RESUMEN

Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, interactions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-molecule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail. Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measurements. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers and an OTW and find that both approaches can achieve a torque precision better than 1 pN · nm. The OTW, capable of measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times ≲10 s, after which drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measurement time across different measurement modalities and provides a tool to optimize measurement protocols for a given instrument and application.


Asunto(s)
Estadística como Asunto/métodos , Torque , Fenómenos Magnéticos
2.
Proc Natl Acad Sci U S A ; 111(43): 15408-13, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313077

RESUMEN

RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force-torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed "P-RNA," and a highly underwound, left-handed state denoted "L-RNA." Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA: Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA-protein interactions at the single-molecule level.


Asunto(s)
ADN/química , ARN Bicatenario/química , Torque , Fenómenos Magnéticos , Conformación de Ácido Nucleico , Termodinámica
3.
Nano Lett ; 12(7): 3634-9, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22642488

RESUMEN

The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.

4.
Nat Methods ; 7(12): 977-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20953173

RESUMEN

We introduce magnetic torque tweezers, which enable direct single-molecule measurements of torque. Our measurements of the effective torsional stiffness C of dsDNA indicated a substantial force dependence, with C = approximately 40 nm at low forces up to C = approximately 100 nm at high forces. The initial torsional stiffness of RecA filaments was nearly twofold larger than that for dsDNA, yet at moderate torques further build-up of torsional strain was prevented.


Asunto(s)
ADN/química , Magnetismo/métodos , Rec A Recombinasas/química , Cinética , Magnetismo/instrumentación , Reacción de Maillard , Microscopía por Video/métodos , Rec A Recombinasas/metabolismo , Rotación , Estrés Mecánico , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...