Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Expert Rev Respir Med ; 18(3-4): 111-125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743428

RESUMEN

INTRODUCTION: This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED: We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION: Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.


Asunto(s)
Bronquiectasia , Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Bronquiectasia/microbiología , Bronquiectasia/inmunología , Bronquiectasia/terapia , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Progresión de la Enfermedad , Resultado del Tratamiento , Animales , Inmunoterapia
2.
Artículo en Inglés | MEDLINE | ID: mdl-38315959

RESUMEN

RATIONALE: Progressive lung function loss is recognized in COPD; however, no study concurrently evaluates how accelerated lung function decline relates to mucus properties and the microbiome in COPD. OBJECTIVE: Longitudinal assessment of mucus and microbiome changes accompanying accelerated lung function decline in COPD patients. METHODS: Prospective, longitudinal assessment of the London COPD cohort exhibiting the greatest FEV1 decline (n=30; "accelerated decline"; 156 mL/year FEV1 loss) and with no FEV1 decline (n=28; "non-decline"; 49 mL/year FEV1 gain) over time. Lung microbiomes from "paired" sputum (total 116 specimens) were assessed by shotgun metagenomics and corresponding mucus profiles evaluated for biochemical and biophysical properties. RESULTS: Biochemical and biophysical mucus properties are significantly altered in the accelerated decline group. Unsupervised principal component analysis showed clear separation, with mucus biochemistry associated with accelerated decline, while biophysical mucus characteristics contributed to inter-individual variability. When mucus and microbes are considered together, an accelerated decline mucus-microbiome association emerges, characterized by increased mucin (MUC5AC and MUC5B) concentration and the presence of Achromobacter and Klebsiella. As COPD progresses, mucus-microbiome shifts occur, initially characterized by low mucin concentration and transition from viscous to elastic dominance accompanied by the commensals Veillonella, Gemella, Rothia and Prevotella (GOLD A and B) before transition to increased mucus viscosity, mucins, and DNA concentration along with the emergence of pathogenic microorganisms including Haemophilus, Moraxella and Pseudomonas (GOLD E). CONCLUSION: Mucus-microbiome associations evolve over time with accelerated lung function decline, symptom progression and exacerbations affording fresh therapeutic opportunities for early intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Am J Respir Crit Care Med ; 210(1): 47-62, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271608

RESUMEN

Rationale: Chronic infection and inflammation shapes the airway microbiome in bronchiectasis. Utilizing whole-genome shotgun metagenomics to analyze the airway resistome provides insight into interplay between microbes, resistance genes, and clinical outcomes. Objectives: To apply whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis to highlight a diverse pool of antimicrobial resistance genes: the "resistome," the clinical significance of which remains unclear. Methods: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n = 280), including the international multicenter cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 (CAMEB 2) study (n = 251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing Pseudomonas aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing, and the bronchiectasis resistome was evaluated in association with clinical outcomes and underlying host microbiomes. Measurements and Main Results: The bronchiectasis resistome features a unique resistance gene profile and increased counts of aminoglycoside, bicyclomycin, phenicol, triclosan, and multidrug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles, including increased macrolide and multidrug resistance genes, associate with shorter intervals to the next exacerbation, whereas distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant "resistotypes," RT1 and RT2, the latter characterized by poor clinical outcomes, increased multidrug resistance, and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favorable resistome profile demonstrating reduced resistance gene diversity. Conclusions: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis resistotypes link to clinical disease and are modifiable through targeted antimicrobial therapy.


Asunto(s)
Bronquiectasia , Bronquiectasia/fisiopatología , Bronquiectasia/microbiología , Bronquiectasia/tratamiento farmacológico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Transversales , Estudios Longitudinales , Antibacterianos/uso terapéutico , Estudios Prospectivos , Microbiota/genética , Pseudomonas aeruginosa/genética , Esputo/microbiología , Metagenómica/métodos , Adulto , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/complicaciones
4.
Nat Commun ; 14(1): 7772, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012164

RESUMEN

The extracellular matrix of bacterial biofilms consists of diverse components including polysaccharides, proteins and DNA. Extracellular RNA (eRNA) can also be present, contributing to the structural integrity of biofilms. However, technical difficulties related to the low stability of RNA make it difficult to understand the precise roles of eRNA in biofilms. Here, we show that eRNA associates with extracellular DNA (eDNA) to form matrix fibres in Pseudomonas aeruginosa biofilms, and the eRNA is enriched in certain bacterial RNA transcripts. Degradation of eRNA associated with eDNA led to a loss of eDNA fibres and biofilm viscoelasticity. Compared with planktonic and biofilm cells, the biofilm matrix was enriched in specific mRNA transcripts, including lasB (encoding elastase). The mRNA transcripts colocalised with eDNA fibres in the biofilm matrix, as shown by single molecule inexpensive FISH microscopy (smiFISH). The lasB mRNA was also observed in eDNA fibres in a clinical sputum sample positive for P. aeruginosa. Thus, our results indicate that the interaction of specific mRNAs with eDNA facilitates the formation of viscoelastic networks in the matrix of Pseudomonas aeruginosa biofilms.


Asunto(s)
Pseudomonas aeruginosa , ARN , Pseudomonas aeruginosa/metabolismo , ARN/metabolismo , Biopelículas , ADN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
5.
Am J Respir Crit Care Med ; 207(7): 908-920, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288294

RESUMEN

Rationale: Emerging data support the existence of a microbial "gut-lung" axis that remains unexplored in bronchiectasis. Methods: Prospective and concurrent sampling of gut (stool) and lung (sputum) was performed in a cohort of n = 57 individuals with bronchiectasis and subjected to bacteriome (16S rRNA) and mycobiome (18S Internal Transcribed Spacer) sequencing (total, 228 microbiomes). Shotgun metagenomics was performed in a subset (n = 15; 30 microbiomes). Data from gut and lung compartments were integrated by weighted similarity network fusion, clustered, and subjected to co-occurrence analysis to evaluate gut-lung networks. Murine experiments were undertaken to validate specific Pseudomonas-driven gut-lung interactions. Results: Microbial communities in stable bronchiectasis demonstrate a significant gut-lung interaction. Multibiome integration followed by unsupervised clustering reveals two patient clusters, differing by gut-lung interactions and with contrasting clinical phenotypes. A high gut-lung interaction cluster, characterized by lung Pseudomonas, gut Bacteroides, and gut Saccharomyces, is associated with increased exacerbations and greater radiological and overall bronchiectasis severity, whereas the low gut-lung interaction cluster demonstrates an overrepresentation of lung commensals, including Prevotella, Fusobacterium, and Porphyromonas with gut Candida. The lung Pseudomonas-gut Bacteroides relationship, observed in the high gut-lung interaction bronchiectasis cluster, was validated in a murine model of lung Pseudomonas aeruginosa infection. This interaction was abrogated after antibiotic (imipenem) pretreatment in mice confirming the relevance and therapeutic potential of targeting the gut microbiome to influence the gut-lung axis. Metagenomics in a subset of individuals with bronchiectasis corroborated our findings from targeted analyses. Conclusions: A dysregulated gut-lung axis, driven by lung Pseudomonas, associates with poorer clinical outcomes in bronchiectasis.


Asunto(s)
Bronquiectasia , Microbiota , Animales , Ratones , Estudios Prospectivos , ARN Ribosómico 16S/genética , Pulmón/microbiología , Bronquiectasia/tratamiento farmacológico
6.
Eur Respir J ; 61(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926878

RESUMEN

BACKGROUND: Variable clinical outcomes are reported with fungal sensitisation in chronic obstructive pulmonary disease (COPD), and it remains unclear which fungi and what allergens associate with the poorest outcomes. The use of recombinant as opposed to crude allergens for such assessment is unknown. METHODS: A prospective multicentre assessment of stable COPD (n=614) was undertaken in five hospitals across three countries: Singapore, Malaysia and Hong Kong. Clinical and serological assessment was performed against a panel of 35 fungal allergens including crude and recombinant Aspergillus and non-Aspergillus allergens. Unsupervised clustering and topological data analysis (TDA) approaches were employed using the measured sensitisation responses to elucidate if sensitisation subgroups exist and their related clinical outcomes. RESULTS: Aspergillus fumigatus sensitisation was associated with increased exacerbations in COPD. Unsupervised cluster analyses revealed two "fungal sensitisation" groups. The first was characterised by Aspergillus sensitisation and increased exacerbations, poorer lung function and worse prognosis. Polysensitisation in this group conferred even poorer outcome. The second group, characterised by Cladosporium sensitisation, was more symptomatic. Significant numbers of individuals demonstrated sensitisation responses to only recombinant (as opposed to crude) A. fumigatus allergens f 1, 3, 5 and 6, and exhibited increased exacerbations, poorer lung function and an overall worse prognosis. TDA validated these findings and additionally identified a subgroup within Aspergillus-sensitised COPD of patients with frequent exacerbations. CONCLUSION: Aspergillus sensitisation is a treatable trait in COPD. Measuring sensitisation responses to recombinant Aspergillus allergens identifies an important patient subgroup with poor COPD outcomes that remains overlooked by assessment of only crude Aspergillus allergens.


Asunto(s)
Aspergillus fumigatus , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Aspergillus fumigatus/genética , Alérgenos , Estudios Prospectivos , Inmunoglobulina E , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Aspergillus
7.
Cell Host Microbe ; 30(9): 1311-1327.e8, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36108613

RESUMEN

Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.


Asunto(s)
Bronquiectasia , Microbiota , Animales , Bronquiectasia/epidemiología , Humanos , Metagenoma , Ratones , Neisseria/genética
8.
9.
Arch. bronconeumol. (Ed. impr.) ; 58(1): 8-10, ene 2022. ilus
Artículo en Inglés | IBECS | ID: ibc-202835

RESUMEN

No disponible


Asunto(s)
Ciencias de la Salud
10.
Semin Respir Crit Care Med ; 42(4): 556-566, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34261180

RESUMEN

Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.


Asunto(s)
Aspergilosis Broncopulmonar Alérgica , Aspergilosis , Bronquiectasia , Aspergilosis Pulmonar , Aspergillus , Endofenotipos , Humanos
11.
Nat Med ; 27(4): 688-699, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33820995

RESUMEN

Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.


Asunto(s)
Bronquiectasia/microbiología , Microbiota , Bronquiectasia/virología , Progresión de la Enfermedad , Humanos , Metagenómica , Interacciones Microbianas/genética , Microbiota/genética , Filogenia
12.
Clin Respir J ; 15(2): 123-133, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33063421

RESUMEN

OBJECTIVE: To review the airway microbiome in chronic obstructive pulmonary disease (COPD), bronchiectasis and bronchiectasis-COPD overlap (BCO). DATA SOURCE AND STUDY SELECTION: Relevant studies were selected from PubMed, Google scholar, EMBASE and Web of Science. All studies involving human microbiomes, published in the English language, and using the search terms "COPD", "Chronic Obstructive Pulmonary Disease", "Bronchiectasis", "BCO" or "Bronchiectasis and COPD overlap", AND "microbiome", "mycobiome" or "metagenomics" were included. RESULTS: Despite variability in sampling methods and specimen types used, microbiome composition remains relatively comparable in COPD and bronchiectasis with prominence of Proteobacteria, Firmicutes and Bacteroidetes. Alterations to airway microbiomes occur in association to disease severity and/or exacerbations in COPD and bronchiectasis. Decreased alpha diversity and Haemophilus-predominant microbiomes are associated with poorer survival in COPD, while, in bronchiectasis, Pseudomonas-predominant microbiomes demonstrate high exacerbation frequency and greater symptom burden while Aspergillus-dominant mycobiome profiles associate with exacerbations. The role of the microbiome in BCO remains understudied. CONCLUSION: Use of next-generation sequencing has revolutionised our detection and understanding of the airway microbiome in chronic respiratory diseases such as COPD and bronchiectasis. Targeted amplicon sequencing reveals important associations between the respiratory microbiome and disease outcome while metagenomics may elucidate functional pathways. How best to apply this information into patient care, monitoring and treatment, however, remains challenging and necessitates further study.


Asunto(s)
Bronquiectasia , Microbiota , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Índice de Severidad de la Enfermedad
14.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994320

RESUMEN

Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection.


Asunto(s)
Membrana Externa Bacteriana/efectos de los fármacos , Fibrosis Quística/complicaciones , Hormonas Esteroides Gonadales/metabolismo , Pseudomonas aeruginosa/patogenicidad , Estrés Fisiológico/efectos de los fármacos , Alginatos/metabolismo , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Fibrosis Quística/microbiología , Estradiol/química , Estradiol/farmacología , Femenino , Hormonas Esteroides Gonadales/farmacología , Humanos , Inflamación , Masculino , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/genética , Factores Sexuales , Testosterona/química , Testosterona/farmacología , Virulencia
15.
Eur Respir J ; 56(2)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341102

RESUMEN

INTRODUCTION: Allergic sensitisation to fungi such as Aspergillus are associated to poor clinical outcomes in asthma, bronchiectasis and cystic fibrosis; however, clinical relevance in COPD remains unclear. METHODS: Patients with stable COPD (n=446) and nondiseased controls (n=51) were prospectively recruited across three countries (Singapore, Malaysia and Hong Kong) and screened against a comprehensive allergen panel including house dust mites, pollens, cockroach and fungi. For the first time, using a metagenomics approach, we assessed outdoor and indoor environmental allergen exposure in COPD. We identified key fungi in outdoor air and developed specific-IgE assays against the top culturable fungi, linking sensitisation responses to COPD outcomes. Indoor air and surface allergens were prospectively evaluated by metagenomics in the homes of 11 COPD patients and linked to clinical outcome. RESULTS: High frequencies of sensitisation to a broad range of allergens occur in COPD. Fungal sensitisation associates with frequent exacerbations, and unsupervised clustering reveals a "highly sensitised fungal predominant" subgroup demonstrating significant symptomatology, frequent exacerbations and poor lung function. Outdoor and indoor environments serve as important reservoirs of fungal allergen exposure in COPD and promote a sensitisation response to outdoor air fungi. Indoor (home) environments with high fungal allergens associate with greater COPD symptoms and poorer lung function, illustrating the importance of environmental exposures on clinical outcomes in COPD. CONCLUSION: Fungal sensitisation is prevalent in COPD and associates with frequent exacerbations representing a potential treatable trait. Outdoor and indoor (home) environments represent a key source of fungal allergen exposure, amenable to intervention, in "sensitised" COPD.


Asunto(s)
Contaminación del Aire Interior , Enfermedad Pulmonar Obstructiva Crónica , Contaminación del Aire Interior/análisis , Alérgenos , Hongos , Hong Kong , Humanos , Malasia/epidemiología , Singapur
16.
Am J Respir Crit Care Med ; 202(3): 433-447, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320621

RESUMEN

Rationale: Long-term antibiotic use for managing chronic respiratory disease is increasing; however, the role of the airway resistome and its relationship to host microbiomes remains unknown.Objectives: To evaluate airway resistomes and relate them to host and environmental microbiomes using ultradeep metagenomic shotgun sequencing.Methods: Airway specimens from 85 individuals with and without chronic respiratory disease (severe asthma, chronic obstructive pulmonary disease, and bronchiectasis) were subjected to metagenomic sequencing to an average depth exceeding 20 million reads. Respiratory and device-associated microbiomes were evaluated on the basis of taxonomical classification and functional annotation including the Comprehensive Antibiotic Resistance Database to determine airway resistomes. Co-occurrence networks of gene-microbe association were constructed to determine potential microbial sources of the airway resistome. Paired patient-inhaler metagenomes were compared (n = 31) to assess for the presence of airway-environment overlap in microbiomes and/or resistomes.Measurements and Main Results: Airway metagenomes exhibit taxonomic and metabolic diversity and distinct antimicrobial resistance patterns. A "core" airway resistome dominated by macrolide but with high prevalence of ß-lactam, fluoroquinolone, and tetracycline resistance genes exists and is independent of disease status or antibiotic exposure. Streptococcus and Actinomyces are key potential microbial reservoirs of macrolide resistance including the ermX, ermF, and msrD genes. Significant patient-inhaler overlap in airway microbiomes and their resistomes is identified where the latter may be a proxy for airway microbiome assessment in chronic respiratory disease.Conclusions: Metagenomic analysis of the airway reveals a core macrolide resistome harbored by the host microbiome.


Asunto(s)
Asma/microbiología , Bronquiectasia/microbiología , Farmacorresistencia Bacteriana/genética , Disbiosis/microbiología , Macrólidos , Metagenómica , Microbiota/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos , Estudios de Casos y Controles , Femenino , Fluoroquinolonas , Humanos , Masculino , Persona de Mediana Edad , Nebulizadores y Vaporizadores/microbiología , Índice de Severidad de la Enfermedad , Resistencia a la Tetraciclina/genética , Resistencia betalactámica/genética
17.
Breathe (Sheff) ; 14(2): 108-121, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29875830

RESUMEN

Gender differences in chronic respiratory disease, including cystic fibrosis and non-cystic fibrosis bronchiectasis are clinically apparent and of increasing importance. Differences in disease prevalence, severity and outcome are all described, however, the precise cause of the gender dichotomy and their associated underlying mechanisms have been poorly characterised. A lack of dedicated clinical and epidemiological research focused in this area has led to a paucity of data and therefore a lack of understanding of its key drivers. Diagnosis, disease pathogenesis and treatment response are all complex but important aspects of bronchiectasis with an evident gender bias. Broadening our understanding of the interplay between microbiology, host physiology and the environment in the context of chronic lung diseases, such as bronchiectasis, is critical to unravelling mechanisms driving the observed gender differences. In this review, epidemiological, biological and environmental evidence related to gender in bronchiectasis is summarised. This illustrates gender differences as a "real issue" with the objective of mapping out a future framework upon which a gender-tailored medical approach may be incorporated into the diagnosis, monitoring and treatment of bronchiectasis. KEY POINTS: CF and non-CF bronchiectasis are complex, multifactorial chronic pulmonary diseases with gender-specific differences in their prevalence, clinical presentation and disease severity.Microbiology and host physiology (immune and inflammatory responses) are essential aspects of bronchiectasis that are influenced by gender.Sex steroid hormones vary in type, fluctuating pattern and concentration throughout life and between the genders with a potential central role in bronchiectasis-related gender differences.Gender-focused clinical and/or therapeutic intervention has the potential to narrow the observed gender gap occurring in bronchiectasis-related lung disease. EDUCATIONAL AIMS: To summarise the existing knowledge base of gender-related differences in CF and non-CF bronchiectasis.To highlight key areas of importance in the diagnosis, monitoring and treatment of bronchiectasis that is amenable to clinical and/or pharmacological intervention to narrow the existing "gender gap".

18.
Arch Immunol Ther Exp (Warsz) ; 66(5): 329-339, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29541797

RESUMEN

Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous "quorum sensing" (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed "microbial endocrinology" has important implications for host-microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.


Asunto(s)
Bronquiectasia/inmunología , Fibrosis Quística/inmunología , Hormonas Esteroides Gonadales/metabolismo , Inflamación/inmunología , Pulmón/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/fisiología , Animales , Bronquiectasia/microbiología , Fibrosis Quística/microbiología , Hormonas Esteroides Gonadales/inmunología , Humanos , Evasión Inmune , Inflamación/microbiología , Pulmón/microbiología , Percepción de Quorum , Virulencia
19.
Indian J Sex Transm Dis AIDS ; 37(1): 33-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27190410

RESUMEN

BACKGROUND: Hepatitis viruses and human immunodeficiency virus (HIV) coinfection is a major cause of liver diseases worldwide. High prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV) in Asia makes it important to understand HBV and HCV coinfection with HIV in this part of the globe. This study was done with the aim of assessing the time trends of seroepidemiology of HBV and HCV coinfection in HIV patients over the last 3 years. MATERIALS AND METHODS: Year wise retrospective analysis of data between January 2012 and December 2014 was done. RESULTS: The prevalence of HIV infection among 0-20 years and >60 years age group decreased over the last 3 years (2012-2014), 8.4%, 6.4%, and 3.1% and 3.6%, 3.8%, and 1.5%, respectively. While increasing prevalence was seen among 21-40 years age group, 57.8%, 60.2%, and 67.1%, respectively in 2012, 2013, and 2014. There was no significant relationship between age/gender and HBV/HCV seropositivity among HIV-positive patients. The risk of acquiring HBV infection was more in HIV-positive patients who were >60 years of age (odds ratio = 3.3182; 95% confidence interval: 0.3669-30.005). The prevalence of HCV seropositivity is less in HIV-positive patients as only one case was anti-HCV antibody positive in last 3 years who was a male patient in the age group 21-40 years. A declining trend was observed for HIV positive cases over 2012-2014 while no significant trend change is seen in HBV/HCV seropositivity among HIV patients from 2012 to 2104. CONCLUSION: It is recommended to screen HIV patients routinely for concurrent HBV/HCV infection as hepatotropic viruses with HIV increase the risk of liver mortalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...