Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cogn Psychol ; 147: 101607, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804784

RESUMEN

We investigated whether learning an artificial language at 17 months was predictive of children's natural language vocabulary and grammar skills at 54 months. Children at 17 months listened to an artificial language containing non-adjacent dependencies, and were then tested on their learning to segment and to generalise the structure of the language. At 54 months, children were then tested on a range of standardised natural language tasks that assessed receptive and expressive vocabulary and grammar. A structural equation model demonstrated that learning the artificial language generalisation at 17 months predicted language abilities - a composite of vocabulary and grammar skills - at 54 months, whereas artificial language segmentation at 17 months did not predict language abilities at this age. Artificial language learning tasks - especially those that probe grammar learning - provide a valuable tool for uncovering the mechanisms driving children's early language development.


Asunto(s)
Lenguaje , Aprendizaje , Humanos , Niño , Vocabulario , Desarrollo del Lenguaje , Lingüística
2.
Front Psychol ; 14: 1167810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397291

RESUMEN

At the group level, children exposed to certain health and demographic risk factors, and who have delayed language in early childhood are, more likely to have language problems later in childhood. However, it is unclear whether we can use these risk factors to predict whether an individual child is likely to develop problems with language (e.g., be diagnosed with a developmental language disorder). We tested this in a sample of 146 children who took part in the UK-CDI norming project. When the children were 15-18 months old, 1,210 British parents completed: (a) the UK-CDI (a detailed assessment of vocabulary and gesture use) and (b) the Family Questionnaire (questions about health and demographic risk factors). When the children were between 4 and 6 years, 146 of the same parents completed a short questionnaire that assessed (a) whether children had been diagnosed with a disability that was likely to affect language proficiency (e.g., developmental disability, language disorder, hearing impairment), but (b) also yielded a broader measure: whether the child's language had raised any concern, either by a parent or professional. Discriminant function analyses were used to assess whether we could use different combinations of 10 risk factors, together with early vocabulary and gesture scores, to identify children (a) who had developed a language-related disability by the age of 4-6 years (20 children, 13.70% of the sample) or (b) for whom concern about language had been expressed (49 children; 33.56%). The overall accuracy of the models, and the specificity scores were high, indicating that the measures correctly identified those children without a language-related disability and whose language was not of concern. However, sensitivity scores were low, indicating that the models could not identify those children who were diagnosed with a language-related disability or whose language was of concern. Several exploratory analyses were carried out to analyse these results further. Overall, the results suggest that it is difficult to use parent reports of early risk factors and language in the first 2 years of life to predict which children are likely to be diagnosed with a language-related disability. Possible reasons for this are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...