Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Article En | MEDLINE | ID: mdl-37669364

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Diagnostic Imaging , Humans , Cryoelectron Microscopy
2.
Nat Struct Mol Biol ; 30(10): 1468-1480, 2023 10.
Article En | MEDLINE | ID: mdl-37653244

Ribosome assembly is orchestrated by many assembly factors, including ribosomal RNA methyltransferases, whose precise role is poorly understood. Here, we leverage the power of cryo-EM and machine learning to discover that the E. coli methyltransferase KsgA performs a 'proofreading' function in the assembly of the small ribosomal subunit by recognizing and partially disassembling particles that have matured but are not competent for translation. We propose that this activity allows inactive particles an opportunity to reassemble into an active state, thereby increasing overall assembly fidelity. Detailed structural quantifications in our datasets additionally enabled the expansion of the Nomura assembly map to highlight rRNA helix and r-protein interdependencies, detailing how the binding and docking of these elements are tightly coupled. These results have wide-ranging implications for our understanding of the quality-control mechanisms governing ribosome biogenesis and showcase the power of heterogeneity analysis in cryo-EM to unveil functionally relevant information in biological systems.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Ribosome Subunits, Small/metabolism , Escherichia coli Proteins/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism
3.
Biomed J ; 46(6): 100588, 2023 Dec.
Article En | MEDLINE | ID: mdl-36925108

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) strains cause infectious diarrhea and colonize host intestine epithelia via surface-expressed colonization factors. Colonization factor antigen I (CFA/I), a prevalent ETEC colonization factor, is a vaccine target since antibodies directed to this fimbria can block ETEC adherence and prevent diarrhea. METHODS: Two recombinant antigens derived from CFA/I were investigated with a vaccine adjuvant system that displays soluble antigens on the surface of immunogenic liposomes. The first antigen, CfaEB, is a chimeric fusion protein comprising the minor (CfaE) and major (CfaB) subunits of CFA/I. The second, CfaEad, is the adhesin domain of CfaE. RESULTS: Owing to their His-tag, recombinant CfaEB and CfaEad, spontaneously bound upon admixture with nanoliposomes containing cobalt-porphyrin phospholipid (CoPoP), as well as a synthetic monophosphoryl lipid A (PHAD) adjuvant. Intramuscular immunization of mice with sub-microgram doses CfaEB or CfaEad admixed with CoPoP/PHAD liposomes elicited serum IgG and intestinal IgA antibodies. The smaller CfaEad antigen benefitted more from liposome display. Serum and intestine antibodies from mice immunized with liposome-displayed CfaEB or CfaEad recognized native CFA/I fimbria as evidenced by immunofluorescence and hemagglutination inhibition assays using the CFA/I-expressing H10407 ETEC strain. CONCLUSION: These data show that colonization factor-derived recombinant ETEC antigens exhibit immunogenicity when delivered in immunogenic particle-based formulations.


Enterotoxigenic Escherichia coli , Escherichia coli Infections , Animals , Mice , Liposomes , Escherichia coli Infections/prevention & control , Diarrhea , Adhesins, Bacterial , Antigens, Bacterial
4.
PLoS One ; 17(3): e0263671, 2022.
Article En | MEDLINE | ID: mdl-35275926

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/µm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.


COVID-19 Vaccines , COVID-19 , Erythrocyte Membrane , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/immunology , Female , Liposomes , Mice , Pilot Projects , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology , Vaccines, Virus-Like Particle/chemistry , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/pharmacology
5.
Transl Oncol ; 19: 101390, 2022 May.
Article En | MEDLINE | ID: mdl-35290919

Irinotecan (IRI) loaded actively into PEGylated liposomes via a sucrosulfate gradient has been approved recently to treat advanced pancreatic cancer. In this study, a similar liposomal composition was developed that includes a low mole fraction (1 mol.%) of porphyrin-phospholipid (PoP), a photosensitizer that stably incorporates into liposomes, to confer light-triggered IRI release. IRI-loaded PoP liposomes containing ammonium sucrosulfate (ASOS) as a complexing agent were more stable in serum compared to liposomes employing the more conventional ammonium sulfate. Without irradiation, PoP IRI liposomes released less than 5% IRI during 8 h of incubation in bovine serum at 37 °C, but released over 90% of the drug within minutes of exposure to red light (665 nm) irradiation. A single treatment with IRI-PoP liposomes and light exposure (15 mg/kg IRI with 250 J/cm2) resulted in tumor eradication in mice bearing either MIA PaCa-2 tumors or low-passage patient-derived tumor xenografts that recapitulate characteristics of the clinical disease. Analogous monotherapies of IRI or photodynamic therapy were ineffective in controlling tumor growth. Enhanced drug uptake could be visualized within laser-treated tumors by direct in situ imaging of irinotecan. Biodistribution analysis of IRI, its active metabolite (SN-38), and major metabolite (SN-38 G) showed that laser treatment significantly increased tumor accumulation of all IRI-derived molecular species. A pharmacokinetic model that hypothesized tumor vasculature permeabilization as the primary reason underlying the increased drug deposition accounted for the enhanced drug influx into tumors.

6.
Cancer Immunol Res ; 10(3): 314-326, 2022 03 01.
Article En | MEDLINE | ID: mdl-34992135

Tumor-associated self-antigens are potential cancer vaccine targets but suffer from limited immunogenicity. There are examples of mutated, short self-peptides inducing epitope-specific CD8+ T cells more efficiently than the wild-type epitope, but current approaches cannot yet reliably identify such epitopes, which are referred to as enhanced mimotopes ("e-mimotopes"). Here, we present a generalized strategy to develop e-mimotopes, using the tyrosinase-related protein 2 (Trp2) peptide Trp2180-188, which is a murine MHC class I (MHC-I) epitope, as a test case. Using a vaccine adjuvant that induces peptide particle formation and strong cellular responses with nanogram antigen doses, a two-step method systematically identified e-mimotope candidates with murine immunization. First, position-scanning peptide microlibraries were generated in which each position of the wild-type epitope sequence was randomized. Randomization of only one specific residue of the Trp2 epitope increased antitumor immunogenicity. Second, all 20 amino acids were individually substituted and tested at that position, enabling the identification of two e-mimotopes with single amino acid mutations. Despite similar MHC-I affinity compared with the wild-type epitope, e-mimotope immunization elicited improved Trp2-specific cytotoxic T-cell phenotypes and improved T-cell receptor affinity for both the e-mimotopes and the native epitope, resulting in better outcomes in multiple prophylactic and therapeutic tumor models. The screening method was also applied to other targets with other murine MHC-I restriction elements, including epitopes within glycoprotein 70 and Wilms' Tumor Gene 1, to identify additional e-mimotopes with enhanced potency.


Cancer Vaccines , Animals , Antigens, Neoplasm , Epitopes , Mice , Peptides , T-Lymphocytes, Cytotoxic
7.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Article En | MEDLINE | ID: mdl-34851667

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

8.
J Immunother Cancer ; 9(12)2021 12.
Article En | MEDLINE | ID: mdl-34862254

BACKGROUND: Induction of CD8+ T cells that recognize immunogenic, mutated protein fragments in the context of major histocompatibility class I (MHC-I) is a pressing challenge for cancer vaccine development. METHODS: Using the commonly used murine renal adenocarcinoma RENCA cancer model, MHC-I restricted neoepitopes are predicted following next-generation sequencing. Candidate neoepitopes are screened in mice using a potent cancer vaccine adjuvant system that converts short peptides into immunogenic nanoparticles. An identified functional neoepitope vaccine is then tested in various therapeutic experimental tumor settings. RESULTS: Conversion of 20 short MHC-I restricted neoepitope candidates into immunogenic nanoparticles results in antitumor responses with multivalent vaccination. Only a single neoepitope candidate, Nesprin-2 L4492R (Nes2LR), induced functional responses but still did so when included within 20-plex or 60-plex particles. Immunization with the short Nes2LR neoepitope with the immunogenic particle-inducing vaccine adjuvant prevented tumor growth at doses multiple orders of magnitude less than with other vaccine adjuvants, which were ineffective. Nes2LR vaccination inhibited or eradicated disease in subcutaneous, experimental lung metastasis and orthotopic tumor models, synergizing with immune checkpoint blockade. CONCLUSION: These findings establish the feasibility of using short, MHC-I-restricted neoepitopes for straightforward immunization with multivalent or validated neoepitopes to induce cytotoxic CD8+ T cells. Furthermore, the Nes2LR neoepitope could be useful for preclinical studies involving renal cell carcinoma immunotherapy.


Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Carcinoma, Renal Cell/prevention & control , Epitopes/immunology , Nerve Tissue Proteins/immunology , Nuclear Proteins/immunology , Peptide Fragments/pharmacology , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Female , Histocompatibility Antigens Class I/immunology , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/prevention & control , Lung Neoplasms/immunology , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptide Fragments/immunology , T-Lymphocytes, Cytotoxic/immunology
9.
Adv Sci (Weinh) ; 8(24): e2103023, 2021 12.
Article En | MEDLINE | ID: mdl-34716694

Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one of the eight positional libraries tested, randomized at amino acid position 5 (Pos5), shows enhanced induction of Ag-specific CD8+ T cells. A second MHC-I epitope from gp70 is assessed in the same manner and shows, in contrast, multiple positional libraries (Pos1, Pos3, Pos5, and Pos8) as well as the library mixture give rise to enhanced CD8+ T cell responses. The library mixture Pos1-3-5-8 induces a more diverse epitope-specific T-cell repertoire with superior antitumor efficacy compared to an established single mutation mimotope (AH1-A5). These data show that positional peptide libraries can serve as immunogens for improving CD8+ T-cell responses against endogenously expressed MHC-I epitopes.


CD8-Positive T-Lymphocytes/immunology , Leukemia/immunology , Lymphocyte Activation/immunology , Peptide Library , Animals , Disease Models, Animal , Mice , Mice, Inbred BALB C
10.
Langmuir ; 37(36): 10859-10865, 2021 Sep 14.
Article En | MEDLINE | ID: mdl-34450021

Liposomes containing small amounts of porphyrin-phospholipid (PoP) have been shown to encapsulate small molecular weight cargos and then release them upon exposure to red light. A putative mechanism involves transient pore formation in the bilayer induced by PoP-mediated photo-oxidation of unsaturated lipids. However, little is known about the properties of such pores. This study assesses whether large carbohydrate and protein molecules could be released from PoP liposomes upon red light exposure. A small fluorophore with ∼0.5 kDa in molecular weight, fluorescently labeled dextrans of ∼5 and ∼500 kDa, and a ∼240 kDa fluorescent protein were passively entrapped in PoP liposomes. When exposed to 665 nm irradiation, liposomes containing PoP, but not liposomes lacking it, released all these cargos in a size-dependent manner that occurred with oxidation of unsaturated lipids included in the bilayer. Thus, this study demonstrates the feasibility of light-triggered release of large biomacromolecules from liposomes.


Liposomes , Porphyrins , Fluorescent Dyes , Phospholipids
11.
ACS Appl Mater Interfaces ; 13(23): 26712-26720, 2021 Jun 16.
Article En | MEDLINE | ID: mdl-34082523

Delivering hydrophobic molecules through the intestine can be challenging due to limited cargo solubility and the harsh biochemical environment of the stomach. Here, we show that a protein-based nanocarrier system based on the abundant protein histone and the natural cross-linker genipin can deliver hydrophobic cargos, such as dyes and therapeutic molecules, through the gastrointestinal tract. Using hydrophobic near-infrared dyes as model cargos, a panel of potential protein carriers was screened, and histone was identified as the one with the best loading capability. The resulting nanoparticles had a positive ζ potential and were mucoadhesive. Cross-linking of the amine-rich nanocarrier with genipin was particularly effective relative to other proteins and increased the stability of the system during incubation with pepsin. Cross-linking was required for successful delivery of a hydrophobic dye to the colon of mice after oral gavage. To assess the platform for therapeutic delivery, another hydrophobic model compound, curcumin, was delivered using cross-linked histone nanoparticles in a murine colitis model and significantly alleviated the disease. Taken together, these results demonstrate that histone is a cationic, mucoadhesive, and cross-linkable protein nanocarrier that can be considered for oral delivery.


Colitis/drug therapy , Curcumin/pharmacology , Drug Carriers/chemistry , Histones/chemistry , Iridoids/chemistry , Nanoparticles/administration & dosage , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis/pathology , Cross-Linking Reagents/chemistry , Female , Gastrointestinal Tract/metabolism , Hydrophobic and Hydrophilic Interactions , Mice , Mice, Inbred ICR , Nanoparticles/chemistry
12.
Small ; 17(11): e2007165, 2021 03.
Article En | MEDLINE | ID: mdl-33605054

Human papilloma virus (HPV)-16 is associated with cervical cancers and induces expression of the E6 and E7 oncogenes. Using a murine cell line that expresses these, the genes are sequenced, and six predicted major histocompatibility complex (MHC) class I (MHC-I) epitopes are identified. A liposomal vaccine adjuvant based on cobalt-porphyrin-phospholipid (CoPoP) is admixed with synthetic 9-mer epitopes appended with three histidine residues, resulting in rapid formation of peptide-liposome particles. Immunization with multivalent peptides leads to protection from tumor challenge. Of the peptides screened, only the previously identified E749-57 epitope is functional. The peptide-liposome particles that form upon mixing E7HHH49-57 with CoPoP liposomes are stable in serum and are avidly taken up by immune cells in vitro. Immunization results in robust protection from tumor challenge and re-challenge. A 100 ng peptide dose protects mice in a therapeutic tumor challenge when admixed with CoPoP liposomes, whereas 200-fold higher peptide doses are ineffective with the polyinosinic-polycytidylic (poly(I:C)) adjuvant. CoPoP induces a strong infiltrating CD8+ T-cell response within the tumor microenvironment with an improved functional profile. Vaccine monotherapy using nanogram dosing of the E7HHH49-57 peptide admixed with CoPoP reverses the growth of large established tumors, eradicating subcutaneous tumors upwards of 100 mm3 . Immunization also eradicates lung tumors in a metastasis model.


Cancer Vaccines , Papillomavirus Infections , Adjuvants, Immunologic , Animals , Female , Humans , Liposomes , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins , Papillomavirus Infections/prevention & control , Peptides , Vaccination
13.
Nucleic Acids Res ; 49(1): 547-567, 2021 01 11.
Article En | MEDLINE | ID: mdl-33330920

Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein-bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production.


Bacteroidetes/genetics , Peptide Chain Initiation, Translational , Regulatory Sequences, Ribonucleic Acid , Ribosomes/metabolism , Amino Acid Sequence , Base Sequence , Codon, Initiator , Cryoelectron Microscopy , Crystallography, X-Ray , Escherichia coli/genetics , Flavobacterium/genetics , Gene Expression Regulation, Bacterial , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Puromycin/pharmacology , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 5S/genetics , Ribosomes/ultrastructure , Sequence Alignment , Sequence Homology , Species Specificity
14.
RNA ; 26(12): 2017-2030, 2020 Dec.
Article En | MEDLINE | ID: mdl-32989043

It is only after recent advances in cryo-electron microscopy that it is now possible to describe at high-resolution structures of large macromolecules that do not crystalize. Purified 30S subunits interconvert between an "active" and "inactive" conformation. The active conformation was described by crystallography in the early 2000s, but the structure of the inactive form at high resolution remains unsolved. Here we used cryo-electron microscopy to obtain the structure of the inactive conformation of the 30S subunit to 3.6 Å resolution and study its motions. In the inactive conformation, an alternative base-pairing of three nucleotides causes the region of helix 44, forming the decoding center to adopt an unlatched conformation and the 3' end of the 16S rRNA positions similarly to the mRNA during translation. Incubation of inactive 30S subunits at 42°C reverts these structural changes. The air-water interface to which ribosome subunits are exposed during sample preparation also peel off some ribosomal proteins. Extended exposures to low magnesium concentrations make the ribosomal particles more susceptible to the air-water interface causing the unfolding of large rRNA structural domains. Overall, this study provides new insights about the conformational space explored by the 30S ribosomal subunit when the ribosomal particles are free in solution.


Cryoelectron Microscopy/methods , Escherichia coli/metabolism , Nucleic Acid Conformation , RNA, Ribosomal, 16S/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Small/metabolism , Ribosomes/metabolism , Base Sequence , Escherichia coli/ultrastructure , RNA, Ribosomal, 16S/ultrastructure , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Small/ultrastructure , Ribosomes/ultrastructure
15.
Nucleic Acids Res ; 47(19): 10414-10425, 2019 11 04.
Article En | MEDLINE | ID: mdl-31665744

Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.


GTP Phosphohydrolases/chemistry , RNA, Ribosomal/chemistry , Ribosomal Proteins/chemistry , Bacillus subtilis/chemistry , Bacillus subtilis/genetics , Cryoelectron Microscopy , GTP Phosphohydrolases/ultrastructure , Hydrolysis , Models, Molecular , Protein Conformation , RNA, Ribosomal/genetics , RNA, Ribosomal/ultrastructure , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Large, Bacterial/chemistry , Ribosome Subunits, Large, Bacterial/genetics , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosomes/genetics , Ribosomes/ultrastructure
16.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Article En | MEDLINE | ID: mdl-31265110

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Escherichia coli Proteins/metabolism , GTP-Binding Proteins/metabolism , Homeostasis , RNA, Ribosomal, 16S/metabolism , RNA-Binding Proteins/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Ribosome Subunits, Small/metabolism , Base Sequence , Binding Sites , Cryoelectron Microscopy , Escherichia coli Proteins/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/genetics , Nucleic Acid Conformation , Protein Binding , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small/genetics , Ribosome Subunits, Small/ultrastructure , Ribosome Subunits, Small, Bacterial/genetics , Ribosome Subunits, Small, Bacterial/ultrastructure
...