Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(25): 15397-15405, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704886

RESUMEN

Pyrroloquinoline quinone (PQQ) is a redox cofactor in calcium- and lanthanide-dependent alcohol dehydrogenases that has been known and studied for over 40 years. Despite its long history, many questions regarding its fluorescence properties, speciation in solution and in the active site of alcohol dehydrogenase remain open. Here we investigate the effects of pH and temperature on the distribution of different PQQ species (H3PQQ to PQQ3- in addition to water adducts and in complex with lanthanides) with NMR and UV-Vis spectroscopy as well as time-resolved laser-induced fluorescence spectroscopy (TRLFS). Using a europium derivative from a new, recently-discovered class of lanthanide-dependent methanol dehydrogenase (MDH) enzymes, we utilized two techniques to monitor Ln binding to the active sites of these enzymes. Employing TRLFS, we were able to follow Eu(III) binding directly to the active site of MDH using its luminescence and could quantify three Eu(III) states: Eu(III) in the active site of MDH, but also in solution as PQQ-bound Eu(III) and in the aquo-ion form. Additionally, we used the antenna effect to study PQQ and simultaneously Eu(III) in the active site.


Asunto(s)
Elementos de la Serie de los Lantanoides , Cofactor PQQ , Oxidorreductasas de Alcohol/química , Metanol/química , Cofactor PQQ/química
2.
J Biol Inorg Chem ; 25(2): 199-212, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32060650

RESUMEN

Methanol dehydrogenases (MDH) have recently taken the spotlight with the discovery that a large portion of these enzymes in nature utilize lanthanides in their active sites. The kinetic parameters of these enzymes are determined with a spectrophotometric assay first described by Anthony and Zatman 55 years ago. This artificial assay uses alkylated phenazines, such as phenazine ethosulfate (PES) or phenazine methosulfate (PMS), as primary electron acceptors (EAs) and the electron transfer is further coupled to a dye. However, many groups have reported problems concerning the bleaching of the assay mixture in the absence of MDH and the reproducibility of those assays. Hence, the comparison of kinetic data among MDH enzymes of different species is often cumbersome. Using mass spectrometry, UV-Vis and electron paramagnetic resonance (EPR) spectroscopy, we show that the side reactions of the assay mixture are mainly due to the degradation of assay components. Light-induced demethylation (yielding formaldehyde and phenazine in the case of PMS) or oxidation of PES or PMS as well as a reaction with assay components (ammonia, cyanide) can occur. We suggest here a protocol to avoid these side reactions. Further, we describe a modified synthesis protocol for obtaining the alternative electron acceptor, Wurster's blue (WB), which serves both as EA and dye. The investigation of two lanthanide-dependent methanol dehydrogenases from Methylorubrum extorquens AM1 and Methylacidiphilum fumariolicum SolV with WB, along with handling recommendations, is presented. Lanthanide-dependent methanol dehydrogenases. Understanding the chemistry of artificial electron acceptors and redox dyes can yield more reproducible results.


Asunto(s)
2,6-Dicloroindofenol/química , Oxidorreductasas de Alcohol/química , Electrones , Metosulfato de Metilfenazonio/química , Fenazinas/química , Tetrametilfenilendiamina/química , 2,6-Dicloroindofenol/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Methylobacterium extorquens/enzimología , Metosulfato de Metilfenazonio/metabolismo , Estructura Molecular , Fenazinas/metabolismo , Tetrametilfenilendiamina/metabolismo , Verrucomicrobia/enzimología
3.
J Cell Sci ; 131(10)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29724912

RESUMEN

Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.


Asunto(s)
Actinas/metabolismo , Vasos Sanguíneos/metabolismo , Técnicas Citológicas/métodos , Células Endoteliales de la Vena Umbilical Humana/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular , Actinas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Vasos Sanguíneos/química , Vasos Sanguíneos/crecimiento & desarrollo , Humanos , Cinética , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Proteínas Señalizadoras YAP
4.
Chembiochem ; 2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29524328

RESUMEN

Since the discovery of the biological relevance of rare earth elements (REEs) for numerous different bacteria, questions concerning the advantages of REEs in the active sites of methanol dehydrogenases (MDHs) over calcium(II) and of why bacteria prefer light REEs have been a subject of debate. Here we report the cultivation and purification of the strictly REE-dependent methanotrophic bacterium Methylacidiphilum fumariolicum SolV with europium(III), as well as structural and kinetic analyses of the first methanol dehydrogenase incorporating Eu in the active site. Crystal structure determination of the Eu-MDH demonstrated that overall no major structural changes were induced by conversion to this REE. Circular dichroism (CD) measurements were used to determine optimal conditions for kinetic assays, whereas inductively coupled plasma mass spectrometry (ICP-MS) showed 70 % incorporation of Eu in the enzyme. Our studies explain why bacterial growth of SolV in the presence of Eu3+ is significantly slower than in the presence of La3+ /Ce3+ /Pr3+ : Eu-MDH possesses a decreased catalytic efficiency. Although REEs have similar properties, the differences in ionic radii and coordination numbers across the series significantly impact MDH efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...