Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1236, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871067

RESUMEN

Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.17 eV and suppress the formation of triplet exciton in the BTPSV-4F-based devices. The organic solar cells with BTPSeV-4F as acceptor demonstrate a higher power conversion efficiency of 14.2% with a record high short-circuit current density of 30.1 mA cm-2 and low energy loss of 0.55 eV benefitted from the low non-radiative energy loss due to the suppression of triplet exciton formation. We also develop a high-performance medium bandgap acceptor O1-Br for front cells. By integrating the PM6:O1-Br based front cells with the PTB7-Th:BTPSeV-4F based rear cells, the tandem organic solar cell demonstrates a power conversion efficiency of 19%. The results indicate that the suppression of triplet excitons formation in the near-infrared-absorbing acceptor by molecular design is an effective way to improve the photovoltaic performance of the tandem organic solar cells.

2.
ACS Appl Mater Interfaces ; 13(50): 60279-60287, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881882

RESUMEN

Voltage losses (ΔVOC) are a crucial limitation for the performance of excitonic organic solar cells (OSCs) and can be estimated by two approaches─the radiative limit and the Marcus charge-transfer (MCT) model. In this work, we show that combining the radiative limit and MCT models for voltage loss calculations provides useful insights into the physics of emerging efficient OSCs. We studied nine different donor-acceptor systems, wherein the power conversion efficiency ranges from 4.4 to 14.1% and ΔVOC varies from 0.55 to 0.95 V. For these state-of-the-art devices, we calculated the ΔVOC using the radiative limit and the MCT model. Furthermore, we combined both models to derive new insights on the origin of radiative voltage losses (ΔVrad) in OSCs. We quantified the contribution in ΔVrad due to the bulk intramolecular (S1) disorder and interfacial intermolecular (CT) disorder by revisiting the spectral regions of interest for OSCs. Our findings are in agreement with the expected relationship of VOC with Urbach energy (EU), which suggests that the low EU is beneficial for reduced losses. However, unprecedentedly, we also identify a universal, almost linear relationship between the interfacial disorder (λ) and ΔVrad. We believe that these results can be exploited by the organic photovoltaic (OPV) community for the design of new molecules and a combination of donor-acceptors to further improve OSCs.

3.
ACS Appl Mater Interfaces ; 12(40): 45083-45091, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32900181

RESUMEN

In this work, a unique comprehensive and comparative analysis of photoinduced charge generation, recombination kinetics, and energy losses has been carried out to study the effect of different fullerene-based acceptors (FBAs) and nonfullerene acceptors (NFAs) on the performance of organic solar cells (OSCs). For this, different FBAs, specifically ICBA, PC60BM, and PC70BM, and NFAs, namely, ITIC, IT-4F, and IEICO-4F, were employed independently along with a particular donor polymer, PBDB-T, to fabricate bulk heterojunction OSCs and their performances have been compared. This donor molecule is known to give similar power conversion efficiency (PCE) with FBAs and NFAs and hence is ideal for comparative studies. The origin of the higher PCE of NFA-based OSCs vs FBA-based OSCs is analyzed in terms of spectral coverage, charge generation, recombination, and energy loss. It is found that the energy loss (ΔEloss) is ∼0.8 to 1 eV for FBA-based OSCs, while it is 0.5-0.7 eV for NFA-based OSCs. Interestingly, for the PBDB-T:IEICO-4F-based system, energy losses due to charge generation (ΔECT) are ∼0 eV and therefore this system has minimum ΔEloss among all of the studied devices. Providing a systematic, comprehensive, and comparative outlook, our study may further be extended to new upcoming NFA systems and beyond the donor system used in this work.

4.
ACS Appl Mater Interfaces ; 10(51): 44576-44582, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30488688

RESUMEN

By varying the concentration of a solvent additive, we demonstrate the modulation of intermolecular (donor/acceptor (D/A) interface) and intramolecular (bulk) disorder in blends of the low-band gap polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4 H-cyclopental[2,1- b;3,4- b']-dithiophene)- alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). Using the solvent additive concentration of 1,8-diiodooctane (DIO) in the host-processing solvent, the disorder in the bulk and at the interface is studied in terms of Urbach energy, electroluminescence (EL) broadening, and EL quantum efficiency (ELQE). The Urbach energy varies from 80 to 39 meV for bulk and 39 to 51 meV for D/A interface. An interesting feature is that changes in the Urbach energy of the D/A interface are opposite to those of the Urbach energy of bulk; i.e., the disorder at the D/A interface increases as the disorder in the bulk decreases with increase in DIO concentration. Our study evidently suggested a negative correlation between intermolecular and intramolecular property in a bulk-heterojunction solar cell. Furthermore, scanning photocurrent microscopy measurements show that the effective hole transport length is double in magnitude for cells processed from 3 vol % DIO in comparison to that in cells processed from 0 vol %. This increase in effective hole transport length is explained by an increase in the delocalization of the electronic states involved in charge transport, as confirmed by dark J- V knee voltage,  JSC and EU-bulk measurements. Henceforth, we provide a functional relationship between the additive-induced bulk-heterojunction morphology and the optoelectronic properties of PCPDTBT-based solar cells.

5.
ACS Appl Mater Interfaces ; 8(31): 20243-50, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27415029

RESUMEN

In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...