Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 255: 128219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981270

RESUMEN

Berberine hydrochloride (BH) has long been known for its therapeutic efficacy. In the present study, we aimed to treat mice with colitis using dung beetle chitosan (DCS) -transported BH. To achieve this, BH-loaded DCS/sodium alginate microspheres (SA-DCS-BH) were prepared. The SA-DCS-BH was characterized using SEM, DLS, FT-IR, and XRD, then was used for administration and anti-inflammatory examination in mice. SEM and DLS confirmed the surface morphology of the microspheres, and the particle size was relatively uniform. FT-IR and XRD results confirmed that BH was successfully loaded. In vitro and in vivo studies showed that SA-DCS-BH had slow-release ability. After treatment with SA-DCS-BH, DAI was significantly reduced, colon weight and length increased, spleen length and weight reduced, concentrations of pro-inflammatory cytokines in colonic tissues were reduced, and gut microbiota species abundance was modulated. In addition, this study found a correlation between specific microbes and colitis indicators, Muribaculaceae showed sequential growth after receiving BH, SA-CS-BH, and SA-DCS-BH treatments, respectively. It was concluded that SA-DCS-BH effectively delivered the BH to the intestine with slow-release ability and exhibited anti-inflammatory effects by immune response. Compared to commercial chitosan, DCS has potential for modulating intestinal microorganisms and more suitable carrier for intestinal drug delivery systems.


Asunto(s)
Berberina , Quitosano , Colitis , Ratones , Animales , Quitosano/farmacología , Berberina/farmacología , Microesferas , Espectroscopía Infrarroja por Transformada de Fourier , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Antiinflamatorios/farmacología , Alginatos/farmacología , Colon
2.
Int J Biol Macromol ; 253(Pt 6): 127124, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776931

RESUMEN

Present study investigates the impact of chitosan microspheres-based controlled-release nitrogen fertilizer (Cm-CRNFs) on biological characteristics of Brassica rapa ssp. pekinensis (Chinese cabbage) and soil. The study was carried out under various four treatments, urea (0.8033 g), blank chitosan microspheres (without urea), Cm-CRNFs (0.8033 g), and a control group (CK). The results indicated that Cm-CRNFs significantly prolonged the nitrogen release and enhanced the plant shoot length, shoot diameter, number of branches, pods, total amino acids, and vitamin C of Brassica rapa ssp. pekinensis as well as increased the soil nutrient availability. Chao index of bacterial diversity analysis showed a significant reduction of 15.89 % in Cm-CRNFs, but the Shannon index value in Cm-CRNFs was increased by 23.55 % compared to CK. Furthermore, Cm-CRNFs treatment significantly influenced genus richness level of Arthrobacter, Archangium, Bacillus, and Flavihumibacter. Moreover, relative abundance of bacteria significantly enhanced Cm-CRNFs, including Acidobacteriota, Acitinobacteriota, Cloroflexi, Cyanobacteria, and Patescibacteria. Soil enzyme activity such as: urease, acid phosphatase, and catalase enzymes in Cm-CRNFs and urea treatment significantly increased. Besides, other enzymes such as: cellulase and ß-glucosidase activity decreased in the Cm-CRNFs treatment. It was concluded that Cm-CRNFs potentially prolonged discharge of micro/macronutrients and improved soil bacterial diversity, which ultimately enhanced the soil fertility and improved the soil enzyme activity.


Asunto(s)
Brassica rapa , Quitosano , Brassica rapa/metabolismo , Suelo/química , Fertilizantes/análisis , Quitosano/farmacología , Preparaciones de Acción Retardada/farmacología , Nitrógeno/metabolismo , Microesferas , Urea/farmacología
3.
NanoImpact ; 27: 100411, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803478

RESUMEN

Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.


Asunto(s)
Agricultura , Fertilizantes , Fertilizantes/análisis , Seguridad Alimentaria , Nanotecnología , Suelo/química
4.
Mol Biol Rep ; 48(12): 8009-8021, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34665398

RESUMEN

BACKGROUND: Chemical fertilization helped modern agriculture in grain yield improvement to ensure food security. The response of chemical fertilization for higher hybrid rice production is highly dependent on optimal fertilization management in paddy fields. To assess such responses, in the current work we examine the yield, root growth, and expression of related genes responsible for stress metabolism of nitrogen (N) and phosphorus (P) in two hybrid-rice cultivars Deyou4727 (D47) and Yixiangyou2115 (Y21). METHODS AND RESULTS: The experiment followed four nitrogen (N) (N0, N60, N120, and N180 kg/ha) and phosphorus (P) (P0, P60, P90, and P120 kg/ha) fertilizer levels. The grain yield in D47 was more sensitive to nitrogen application, while Y21 was more sensitive to phosphorus application, which resulted in comparatively higher biomass and yield. Our findings were corroborated by gene expression studies of glutamine synthetase OsGS1;1 and OsGS1;2 and phosphate starvation-related genes PHR1 and SPX, confirming sensitivity to N and P application. The number of roots was less sensitive to nitrogen application in D47 between N0 and N60, but the overall nutrient response difference was significantly higher due to the deep rooting system as compared to Y21. CONCLUSIONS: The higher yield, high N and P use efficiency, and versatile root growth of D47 make it suitable to reduce unproductive usage of N and P from paddy fields, improving hybrid rice productivity, and environmental safety in the Sichuan basin area of China.


Asunto(s)
Agricultura/métodos , Oryza/genética , Oryza/metabolismo , Biomasa , China , Fertilizantes/análisis , Nitrógeno/metabolismo , Nutrientes , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Suelo
5.
Sci Rep ; 11(1): 5833, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712650

RESUMEN

Heavy metals are naturally occurring elements that have a high atomic weight and let out in the environment by agriculture, industry, mining and therapeutic expertise and thrilling amassing of these elements pollutes the environment. In this study we have investigated the potential of garlic interplanting in promoting hyper accumulation and absorption of heavy metals to provide a basis for phytoremediation of polluted land. Monoculture and inter-plantation of garlic were conducted to investigate the absorption of cadmium and lead contamination in the land. A group of experiments with single planting (monoculture) of Lolium perenne, Conyza canadensis and Pteris vittata as accumulators were used. The results have shown that garlic has a potential as a hyper accumulate and absorb heavy metals. It was found that the accumulation of Cd and Pb was much higher with inter-planting. Garlic boosts up the absorption of heavy metals in Lolium perenne of Cd 66% and Pb 44% respectively. The Inter-planting of garlic with Pteris vittata promotes the Cd 26% and Pb 15%. While the maximum accumulation of Lead 87% and Cadmium 77% occurred in Conyza canadensis herb plant. The bacterial diversity in the soil was analyzed for each experimental soil and was found that the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Planctomycetes were commonly abundant in both single planting (monoculture) of ryegrass and interplanting ryegrass with garlic habitats. Variances were observed in the bacterial floral composition of single (monoculture) and intercropping (interplant) soils. Relative abundance of bacterial taxa revealed that the proportion of Proteobacteria, Acidobacteria, and Actinobacteria in the inter-planting group was slightly higher, while Firmicutes and Planctomycetes were low. This study provides the evidence to control the heavy metals contaminated soils with weed species. Growth promotion and heavy metal uptake of neighboring plants proved the specific plant-plant and plant-microbial associations with garlic plants. This inter-planting strategy can be used to improve heavy metal absorption.


Asunto(s)
Ajo/crecimiento & desarrollo , Metales Pesados/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Biodiversidad , Conyza/crecimiento & desarrollo , Conyza/metabolismo , Ajo/metabolismo , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Metales Pesados/metabolismo , Pteris/crecimiento & desarrollo , Pteris/metabolismo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...